Ein Mikrofon ist ein Schallwandler, der Luftschall in entsprechende elektrische Spannungsänderungen, das Mikrofonsignal, umwandelt. Das unterscheidet Mikrofone von Tonabnehmern, die Festkörperschwingungen umsetzen. Unterwasser- Mikrofone werden als Hydrofone bezeichnet.
In der gängigen Bauform folgt eine dünne, elastisch gelagerte Membran den Druckschwankungen des Schalls. Sie bildet durch ihre Bewegung die zeitliche Verteilung des Wechseldrucks nach. Ein Wandler, der mechanisch oder elektrisch mit der Membran gekoppelt ist, generiert daraus eine der Membranbewegung entsprechende pulsierende Gleichspannung oder eine Tonfrequenz-Wechselspannung.
Inhaltsverzeichnis |
Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf bitte mit, ihn zu verbessern, und entferne anschließend diese Markierung. |
Die Entwicklung des Mikrofons ging Hand in Hand mit der Entwicklung des Telefons. In der Geschichtsschreibung werden die Entwicklungen von grundlegenden Wandlerprinzipien angeführt, die Entwicklung verschiedener akustischer Bauformen ergab sich im Zuge der Verbesserung einzelner Modelle.
Der in die USA ausgewanderte italienische Ingenieur Antonio Meucci entwickelte bereits 1860 ein Telefon auf Basis eines ebenfalls von ihm erfundenen elektromagnetischen Wandlers. Er war jedoch ein schlechter Geschäftsmann und konnte das Geld für eine Patentanmeldung nicht aufbringen. Der heute meistens als Erfinder des Mikrofons angeführte schottische Taubstummenlehrer Alexander Graham Bell stahl Meuccis Erfindung und meldete ein technisch gleichartiges Patent am 14. Februar 1876 an.[1]
Die Erkenntnis, dass Kohle die Schwingung einer Membran sehr simpel in elektrische Impulse umsetzen kann, führte Ende des 19. Jahrhunderts zur Entwicklung des Kohlemikrofons. 1877 entwickelte Emil Berliner in den Bell Labs, USA, einen Schallwandler, der den druckabhängigen Übergangswiderstand zwischen Membran und einem Stück Kohle zur Signalgewinnung nutzte. Als Erfinder des Kohlemikrofons wird jedoch David Edward Hughes gehandelt, der eine ähnliche Entwicklung auf der Basis von Kohlestäben erstmals am 9. Mai 1878 in der Königlichen Akademie in London öffentlich vorstellte.
Noch im gleichen Jahr verbesserte der Engländer Henry Hunnings das Mikrofon, indem er anstatt von Kohlestäben Kohlekörner verwendete. Das Kohlemikrofon in der Form, in der es im Grundprinzip die nächsten 100 Jahre nicht mehr verändert wurde, konstruierte Anthony C. White im Jahre 1890. Dieses „Kohlekörner-Mikrofon“ war als Studiomikrofon bis in die 1940er Jahre in Gebrauch; es gilt heute als erstes „richtiges“ Mikrofon und wurde erst vom Kondensatormikrofon verdrängt.
Georg Neumann entwickelte im Jahr 1923 das Kohlemikrofon weiter, wodurch die Klangqualität besonders bei tiefen Frequenzen stark verbessert wurde. Der Durchbruch gelang ihm jedoch mit der Entwicklung des NF-Kondensatormikrofons. Membran und Gegenelektrode bilden hierbei einen Kondensator, der auf eine Gleichspannung aufgeladen wird; durch die Membranbewegung ändert sich die Kondensatorkapazität, aus der das Signal gewonnen resultiert. Dieses Wandlerprinzip war der Schallaufzeichnungstechnik seiner Zeit qualitativ weit voraus und ist noch heute Standard für Mikrofone höchster Qualität.
1928 gründete Georg Neumann zur Vermarktung seines Kondensatormikrofons eine Firma, die Georg Neumann & Co KG in Berlin, die noch heute zu den führenden Mikrofonherstellern gehört. Das erste funktionstüchtige Serienmodell, das Neumann CMV3, auch „Neumann-Flasche“ genannt, ist auf vielen zeitgenössischen Filmaufnahmen zu bewundern. Legendär ist auch das erste Mikrofon mit elektrisch umschaltbarer Richtcharakteristik, das Neumann U47 von 1949. Es zählt auch heute noch zu den begehrtesten und teuersten Mikrofonen: Ein funktionsfähiges, gut erhaltenes U47 wird für rund 5.000 Euro gehandelt.
1962 erfanden Gerhard M. Sessler und James Edward Maceo West das Elektret-Mikrofon, eine Variante des Kondensatormikrofons, die heute mit 90 Prozent Marktanteil den häufigsten Mikrofontyp darstellt. Gerhard M. Sessler und Dietmar Hohm erfanden außerdem in den 1980er-Jahren an der TH Darmstadt das Silizium-Mikrofon.
Weitere Namen, die in der Entwicklung des Mikrofons auftauchen, sind: David Edward Hughes, Sidney Shure, Fritz Sennheiser, Eugen Beyer.
Wichtige Hersteller von dynamischen Mikrofonen: Sidney Shure (SM58: weltweit meistverkauftes Bühnenmikrofon), Electrovoice, Sennheiser, Beyerdynamic (Spezialität: Bändchenmikrofone), AKG Acoustics GmbH Wien.
Wichtige Hersteller von Kondensatormikrofonen: Georg Neumann GmbH Berlin (gehört seit 1991 zur Fa. Sennheiser), Sennheiser (Spezialität: HF-Kondensatormikrofone), Microtech Gefell GmbH (in Gefell, ehemals Fa. Neumann & Co. KG, später VEB Mikrofontechnik Gefell), Schoeps, Danish Pro Audio (ehemals Brüel & Kjaer), AKG Acoustics GmbH Wien, Brauner Microphones.
Wichtige Hersteller von Messmikrofonen: Brüel & Kjaer, GRAS, Microtech Gefell GmbH, Norsonic, PCB Piezotronics.
Abhängig von der akustischen Bauform des Mikrofons folgt die Membran dem Schalldruck (Druckmikrofon, ungerichtetes Mikrofon) oder dem Schalldruckgradienten (Druckgradientenmikrofon, gerichtetes Mikrofon). Das Wandlerprinzip ist maßgeblich für die technische Qualität des Mikrofonsignals, die durch Rauschabstand, Impulstreue, Klirrfaktor und Frequenzgang charakterisiert wird.
Mikrofonwandler können wie folgt kategorisiert werden[2]:
Das Dynamische Mikrofon arbeitet nach dem Prinzip der elektromagnetischen Induktion. Technisch betrachtet führt beim Dynamischen Mikrofon die Geschwindigkeit der Membranbewegung zum Signal, nicht die momentane Auslenkung, daher bezeichnet man es auch als Geschwindigkeitsempfänger. Der Haupteinsatzbereich von Dynamischen Mikrofonen ist der Live-Bereich.
Das Tauchspulenmikrofon ist eine Bauform des Dynamischen Mikrofons. Der Begriff bezieht sich auf den Aufbau des Wandlers: Bei Tauchspulmikrofonen ist die Membran wie bei einem elektrodynamischen Lautsprecher fest mit einer Spule (Tauchspule) verbunden, die durch die Membranbewegung in einem dauermagnetischen Feld (Luftspalt eines Topfmagneten) bewegt wird. Die relative Bewegung von Spule und Magnetfeld erzeugt durch Induktion die Signalspannung. Die Vorteile dieses Mikrofontyps sind:
Tauchspulenmikrofone haben aufgrund der Spulenmasse ein nach oben begrenztes Wiedergabespektrum sowie ein schlechtes Impulsverhalten. Sie sind gut für Nahaufnahmen geeignet, da ihre nichtlinearen Verzerrungen auch bei hohen Schallpegeln gering sind. Professionell werden dynamische Mikrofone im Live-Bereich gern genutzt.
Ein Bändchenmikrofon (engl. Ribbon Microphone) ist eine Bauform des Dynamischen Mikrofons. Bei diesem Mikrofontyp sind Wandlerprinzip und akustische Funktionsweise eng verknüpft.
Die Membran des Bändchenmikrofons ist ein zickzack-gefalteter Aluminiumstreifen von zwei bis vier Millimeter Breite und einige Zentimeter Länge. Der Streifen ist nur wenige Mikrometer dick. Bei Anregung durch eintreffenden Schall induziert die Bewegung im Magnetfeld eine der Bewegungsgeschwindigkeit entsprechende Spannung, die an den Enden der Aluminiumstreifen abgegriffen werden kann.
Bändchenmikrofone besitzen einen im Arbeitsbereich nahezu linearen Frequenzgang; ihre äußerst leichte Membran verleiht ihnen ein gutes Impulsverhalten. Prinzipbedingt kann die Membran von beiden Seiten vom Schall erreicht werden. Die akustische Bauweise ist daher die eines Druckgradientenmikrofons. Daraus folgt die Richtcharakteristik einer Acht. Bändchenmikrofone sind nicht für die Aufnahme tiefster Frequenzen geeignet.
Das Kondensatormikrofon (engl. condenser microphone) arbeitet nach dem physikalischen Prinzip des Kondensators. Da die Membranauslenkung und nicht die Membrangeschwindigkeit zum Signal führt, ist das Kondensatormikrofon technisch betrachtet ein Elongationsempfänger.
Kondensatormikrofone kommen in den verschiedensten Erscheinungsformen vor, da mit diesem Begriff nur das Wandlerprinzip bezeichnet wird. Der Begriff hat sich aber umgangssprachlich als Mikrofon-Klasse etabliert, da klangliche Eigenschaften mit dem Prinzip der Wandlung eng verknüpft sind.
Prinzip
Beim Kondensatormikrofon ist eine wenige tausendstel Millimeter dicke, elektrisch leitfähige Membran dicht vor einer Metallplatte elektrisch isoliert angebracht. Sobald eine elektrische Spannung angelegt wird, entsteht zwischen der Membran und der Platte ein Potenzialgefälle. Technisch betrachtet entspricht diese Anordnung einem Plattenkondensator, der eine elektrische Kapazität besitzt. Eintreffender Schall bringt die Membran zum Schwingen, wodurch sich der Abstand der beiden Kondensatorfolien und damit die Kapazität des Kondensators verändert. Diese Kapazitätsschwankungen führen zu Spannungsschwankungen – einem elektrischen Signal. Um das Potentialgefälle zwischen den Kondensatorplatten zu erreichen sowie zur Versorgung des Mikrofonverstärkers (Impedanzwandler) ist eine Spannungsquelle notwendig. Üblicherweise nutzt man die 48 Volt Phantomspeisung des Mikrofonvorverstärkers oder des Mischpults; siehe auch: Symmetrische Signalübertragung.
Richtcharakteristiken
Kondensatorkapseln sind sowohl als Druckmikrofon wie auch als Druckgradientenmikrofon gebräuchlich. Manche Kondensatormikrofone haben eine umschaltbare Richtcharakteristik. Ermöglicht wird dieses durch die Kombination zweier Druckgradientenmikrofone (Doppelgradientenmikrofon).[3][4]
Der Kondensatorschallwandler ist heute wegen der hohen Signalqualität Aufnahmestandard in Tonstudios. Er ist allerdings recht empfindlich und kann sogar durch sehr hohen Schalldruck beschädigt werden. Im Beschallungs- und Livebereich dominieren daher dynamische Schallwandler.
Das Elektretmikrofon ist eine mit dem Kondensatormikrofon eng verwandte Bauform. Auf die der Membran gegenüberliegende Kondensatorplatte ist eine Elektretfolie aufgebracht, in der die Membranvorspannung sozusagen „eingefroren“ ist. Ein Mikrofonverstärker zur Verstärkung der schwachen Signalströme befindet sich in der Mikrofonkapsel. Es wird mit 1,5 Volt eine viel geringere Spannung als beim reinen Kondensatormikrofon benötigt (48 Volt). Der Strombedarf von 1 mA begünstigt den Einsatz in mobilen Geräten.
Elektretmikrofone sind mit 90 Prozent Marktanteil die weltweit am häufigsten hergestellten und eingesetzten Mikrofone. Dank ihrer extrem kompakten Bauweise, des geringen Preises und der für viele Zwecke ausreichenden Signalqualität finden sie sich in praktisch jedem modernen Sprachkommunikationsmittel (Headsets, Handys, Hörgeräte usw.). Die Größe der Mikrofonkapsel liegt meistens zwischen einem Millimeter und einem Zentimeter. Der Frequenzgang kann bei guten Elektretmikrofonen als Druckempfänger (Mikrofon mit Kugelcharakteristik) von 20 Hz bis 20 kHz gehen.
Elektretmikrofone eignen sich nicht für große Schallamplituden – sie erzeugen dann nichtlineare Verzerrungen.
Als Kohlemikrofon wird ein elektroakustisches Wandlerprinzip bezeichnet, bei dem die Druckschwankungen des Schalls Änderungen eines elektrischen Widerstandes bewirken. Zur Wandlung dient dabei der druckabhängige Übergangswiderstand im hinter der Membran gelagerten Kohlegranulat.
Kohlemikrofone besitzen schlechte Wiedergabeeigenschaften; die Masse der Metallmembran begrenzt und verzerrt den Frequenzgang, die Kohlekörner verursachen insbesondere bei Bewegung Rauschen. Durch die nichtlinearen Zusammenhänge zwischen Druck und Übergangswiderstand der Kohlekörner entstehen nicht reproduzierbare, nichtlineare Verzerrungen.
Vorteile und Einsatzgebiet
Der Hauptvorteil des Kohlemikrofones ist dessen hohes Ausgangssignal – es liefert in einem Gleichspannungskreis einen für die Fernübertragung und Wiedergabe mit einer elektromagnetischen Hörkapsel ausreichendes Signal. Verstärkung ist nicht notwendig.
Kohlemikrofone wurden daher früher in großer Stückzahl in Telefonen eingesetzt. Man geht davon aus, dass durch die Erfindung des Kohlemikrofons die Entwicklung des Fernsprechwesens außerordentlich beschleunigt wurde. In der professionellen Tontechnik ist das Kohlemikrofon bereits in den 1920er- und 1930er-Jahren vom Kondensatormikrofon verdrängt worden.[5] In der Kommunikationstechnik dominiert heute das Elektretmikrofon den Markt.
Ein Piezomikrofon ist eine Mikrofonbauform, deren Wandlerprinzip auf den Eigenschaften piezoelektrischer Elemente beruht. Eine Membran folgt den Druckschwankungen des Schalls. Sie ist mechanisch mit einem piezoelektrischen Element gekoppelt. Es wird durch die Druckschwankungen minimal verformt und gibt diese als elektrische Spannungsschwankungen aus. Als piezoelektrisches Material wird meistens die Piezokeramik Blei-Zirkonat-Titanat (PZT) verwendet.
Solche Mikrofone waren in den 1930er- bis 1950er-Jahren populär. Sie sind mechanisch robust und haben Vorteile durch ihre simple Bauweise. Ein großer Nachteil dieser Wandlertechnik ist der hohe Klirrfaktor. Sie eignen sich prinzipiell nicht für hochqualitative Aufnahmen und konnten sich auch in der Telekommunikationstechnik nicht gegen das Kohlemikrofon durchsetzen. Die Schwingungswandlung durch piezoelektrische Elemente ist hingegen bei Kontaktschallwandlern (Tonabnehmer in Plattenspielern und für Instrumente, Körperschallaufnehmer, Schwingungsaufnehmer) weit verbreitet. Die hier zur Verfügung stehenden Kräfte sind in der Regel wesentlich größer und führen zu besseren Übertragungseigenschaften als es bei Luftschall der Fall ist.
Die akustische Bauform ist entscheidend für die Richtcharakteristik und den Frequenzgang. Im Gegensatz zu Lautsprechern spielt die Membrangröße bei Mikrofonen bezüglich deren Tiefenwiedergabe eine geringere Rolle, da Mikrofone wie die menschlichen Ohren lediglich als Sensoren wirken und nicht wie Lautsprecher Luft im tieffrequenten Bereich mit möglichst geringem Hub zu verdichten haben. Eine Ausnahme sind Infraschall-Sensoren.
In der Mikrofontechnik beschreibt die Richtcharakteristik im Polardiagramm die Empfindlichkeit eines Mikrofons als Ausgangsspannung in Abhängigkeit vom Schalleinfallswinkel. Man kann dabei zwischen den Verhältnissen im Direktfeld und im Diffusfeld differenzieren.[6]
Der Richtcharakter hängt ab von der akustischen Bauform der Mikrofonkapsel und von äußeren Formelementen (z. B. Richtrohrmikrofon). Die Stärke der Richtwirkung beschreibt man mit dem Bündelungsgrad bzw. dem Bündelungsfaktor.[7] Die Richtcharakteristik von Mikrofonen wird in reflexionsarmen Räumen im Direktfeld D gemessen. Dabei wird das Mikrofon in 1 m Abstand von einer 1-kHz-Schallquelle gedreht und dabei der Ausgangspegel des Mikrofonsignals in Abhängigkeit vom Einfallswinkel gemessen.
Die Richtwirkung ist durch charakteristische Muster gekennzeichnet[8][9]:
Kugel
Omnidirectional |
Acht
Bidirectional |
Keule
Directional |
---|
Ein reines Druckmikrofon besitzt keine Richtwirkung, also eine kugelförmige Richtcharakteristik (omnidirektional). Ein Druckgradientenmikrofon in seiner reinen Form (z. B. Bändchenmikrofon) liefert als Richtcharakteristik eine Acht.[10] Die Richtcharakteristik „Keule“ wird durch das Prinzip des Interferenzrohres gewonnen (Richtrohrmikrofon).
Als standardisierte Formen zwischen Kugel- und Achtercharakteristik gibt es „breite Niere“, „Niere“, „Superniere“ und „Hyperniere“.[11]
Breite Niere
Subcardioid |
Niere
Cardioid |
Superniere
Supercardioid |
Hyperniere
Hypercardioid |
---|
Aufgrund von den komplexen Verhältnissen des Schallfelds weicht der reale Richtcharakter in der Praxis von diesen theoretischen Mustern individuell ab. Starke Abweichungen der Muster sind dann zu beobachten, wenn die Wellenlänge der Signalfrequenz sich im Bereich des Kapseldurchmessers bewegt. Daher sind diese Verzerrungen umso geringer, je kleiner der Membrandurchmesser ist. Bei [[Druckgradientenmikrofonen, deren Richtcharakter durch akustische Laufzeitelemente oder Doppelmembranbauweise von der reinen Acht etwa zur Niere modifiziert wurde, sind die größten Abweichungen zu erwarten. Bei Druckmikrofonen führen etwa der Druckstaueffekt wie auch Schallabschattung durch den Mikrofonkörper zu einer Richtwirkung bei hohen Frequenzen.[12]
Druckmikrofone (Mikrofon mit Druckcharakteristik, Druckempfänger) arbeiten vorwiegend ungerichtet (Kugelcharakteristik). Diese Bauweise ist weit verbreitet in Form von Elektretmikrofonen, z. B. in Mobiltelefonen oder Headsets.
Prinzip und Eigenschaften
Bei einem Druckmikrofon ist die Mikrofonkapsel im Gegensatz zu der eines Druckgradientenmikrofons rückseitig geschlossen: Die schallaufnehmende Membran ist vor einem nach hinten geschlossenen Hohlraum angebracht[13]. Dieser verhindert, dass der Schall die Membran umwandert und sich auch an deren Rückseite auswirkt. Einfallender Schall wird unabhängig von der Einfallsrichtung immer in gleicher Polarität wiedergegeben. Das Druckmikrofon reagiert ähnlich wie ein Barometer auf Luftdruckschwankungen. Daher kann ein solches Mikrofon auch bei sehr tiefen Frequenzen bis in den Infraschallbereich eingesetzt werden. In der Messtechnik werden daher üblicherweise Druckmikrofone verwendet.
Für Druckmikrofone wird immer die Richtcharakteristik einer Kugel angegeben. Sämtliche Mikrofone mit anderen Richtcharakteristiken als die der Kugel, speziell solche mit umschaltbarer Charakteristik, werden mit der Bauform des Druckgradientenmikrofons realisiert.
Bei einem Druckgradientenmikrofon (Mikrofon mit Druckgradientencharakteristik) ist die Mikrofonkapsel im Gegensatz zu einem Druckmikrofon rückseitig offen – die Membran ist für den Schall von allen Seiten zugänglich. Diese Mikrofonbauform wird wissenschaftlich auch als Druckgradientenempfänger oder Schnelle-Empfänger bezeichnet.
Prinzip und Eigenschaften
Da der Schall auch die Rückseite der Membran erreicht, folgt diese nicht dem absoluten Schalldruck, wie es beim Druckempfänger der Fall ist, sondern dem Druckgradienten bzw. der Schallschnelle. Ein typisches Beispiel ist das Bändchenmikrofon.
Die Druck-Differenz ergibt sich, da der Schall die Membran umwandern muss, um sich auch auf der Rückseite auszuwirken. Die dazu benötigte Zeit Δt resultiert in einer „Druckdifferenz“ (einem Druckgradienten).
Δp = pvorn - phinten
Bei gegebenem Δt ist der Druckgradient um so höher, je schneller der Schalldruckwechsel erfolgt. Zu tiefen Frequenzen hin sinkt der resultierende Druckgradient Δp entsprechend ab. Siehe: akustischer Kurzschluss.
Trifft ein Signal genau von der Seite (90°) auf die Membran, so ergibt sich keine Druckdifferenz und somit auch keine Membranbewegung. Bei Beschallung der Membranrückseite ist die Polarität des Mikrofonsignals gedreht (spannungsinvertiert).[14][15]
Die Richtcharakteristik ist in der beschriebenen symmetrischen Grundbauweise die einer Acht. Durch die Gestaltung des Mikrofons lassen sich auch andere Richtcharakteristiken realisieren, die zwischen Kugel und Acht liegen, wie die Breite Niere, die Niere, die Superniere und die Hyperniere.
Sämtliche Richtcharakteristiken außer der Kugel (Druckmikrofon) können nur mit Druckgradientenmikrofonen realisiert werden.
Der Begriff Grenzflächenmikrofon, engl.: „boundary layer“ oder „pressure zone microphone“, bezeichnet eine Mikrofonbauform hinsichtlich ihrer akustischen Funktionsweise. Es stellt einen Sonderfall dar, weil hier der Mikrofonkörper konzeptioneller Teil der akustischen Bauform ist.
Der Mikrofonkörper ist eine Platte, auf der meistens eine Druckmikrofonkapsel membranflächenbündig eingelassen ist. Seine Richtcharakteristik ergibt somit eine Halbkugel. Die Wandler sind üblicherweise in Kondensator- oder Elektretbauweise ausgeführt. Diese Bauart wurde entwickelt, um die vorteilhaften akustischen Eigenschaften auszunutzen, die an schallreflektierenden Flächen auftreten, ohne das Schallfeld selbst zu beeinträchtigen. Das Mikrofon wird auf eine große schallreflektierende Fläche, z. B. auf den Fußboden, gelegt. Es erhält so den maximalen Schalldruck ohne Überlagerungen von Raumschallanteilen, was zu einem ausgewogenen Frequenzgang und einem akustisch guten Raumeindruck führt:
Bei einem Richtrohrmikrofon, auch Interferenzmikrofon (engl. shotgun microphone) ist der Mikrofonkörper durch ein vorgebautes Interferenzrohr ergänzt.
Ein Richtrohrmikrofon besitzt eine ausgeprägte Keulencharakteristik, die durch ein vor ein Druckgradientenmikrofon vorgebautes, mit seitlichen Schlitzen oder Bohrungen versehenes, nach vorn offenes Interferenzrohr zustande kommt. Dieses bewirkt, abhängig von der Rohrlänge, eine deutliche Verstärkung der Richtwirkung ab etwa 1 bis 2 kHz. Bei tieferen Frequenzen entspricht die Richtwirkung derjenigen der Mikrofonkapsel (Nieren- oder Supernierencharakteristik).
Als Wandler sind Kondensator- oder Elektretmikrofone üblich.
Hohlspiegelmikrofone werden (besonders in Aeroakustik-Windkanälen mit offener Messstrecke) häufig zur Ortung von Geräuschen eingesetzt. Meistens werden hierbei Straßenfahrzeuge oder Flugzeuge untersucht.
Unter anderem zur Vogelbeobachtung werden Mikrofone im Fokus eines Parabolspiegels als Richtmikrofon verwendet. Die Richtwirkung tritt – abhängig von der Spiegelgröße – nur bei hohen Frequenzen (ab etwa 1 kHz) ein.
Die aus der Schallwandlung resultierende Wechselspannung, das Mikrofonsignal, ist durch folgende Kenngrößen gekennzeichnet:
Frequenzgang
Der Frequenzgang eines Mikrofons resultiert aus seiner akustischen Bauform, der
Kategorien
Hardware
Bussystem
CPU-Sockel
Chipsatz
Computer
Gehäuse
Grafikchip
Hardware (Produkt)
Hardwarehersteller
Internet (Hardware)
Mikrocontroller
Mikroprozessor
Netzwerkgerät
Programmierbare Logik
Schnittstelle (Hardware)
Soundchip
Speicherkarte
Speicherlaufwerk
Speichermedium
Speichermodul
Standard (Hardware)
Steckkarte
Urheberrecht