Verstärker

Operationsverstärker

aus Wikipedia, der freien Enzyklopädie

Wechseln zu: Navigation, Suche

Der Operationsverstärker (Abk. OP, OPV, OV, OpAmp, OA) ist ein elektronischer Verstärker, der einen invertierenden und einen nichtinvertierenden Eingang besitzt und eine sehr hohe Verstärkung aufweist. Als Eingangsschaltung wird immer ein Differenzverstärker verwendet, der auf sehr geringe Spannungsunterschiede reagiert.

Schaltsymbole eines Operationsverstärkers: Übliche Variante (a) ohne dargestellten Versorgungsanschlüssen und (b) mit eingezeichneter Versorgung. Unter (c) das wenig gebräuchliche Schaltsymbol nach DIN 40900 Teil 13
Schaltsymbole eines Operationsverstärkers: Übliche Variante (a) ohne dargestellten Versorgungsanschlüssen und (b) mit eingezeichneter Versorgung. Unter (c) das wenig gebräuchliche Schaltsymbol nach DIN 40900 Teil 13

Zusätzliche Bauelemente, die vom Ausgang des Operationsverstärkers zu einem oder beiden Eingängen zurückführen und wie eine Gegenkopplung oder, seltener, wie eine Mitkopplung funktionieren, bestimmen das Verhalten der Schaltung in weiten Bereichen. Je nach Wahl der Bauelemente kann der OP dann verschiedene lineare und nichtlineare Operationen durchführen, wie etwa verstärken, logarithmieren oder integrieren, mehrere Signale vergleichen, (gewichtet) addieren, subtrahieren oder als Schwellwertschalter dienen.

Operationsverstärker werden von vielen Herstellern als integrierte Schaltung angeboten. Die daraus resultierenden niedrigen Preise und der geringe Platzbedarf sowie deren vielseitige Einsatzmöglichkeiten ließen sie zu einem der wichtigsten Bauelemente der analogen Elektronik werden. So finden sie sich zur Pegel- und Bandbreitenanpassung von Sensorsignalen, in der Ton- und Fernsehtechnik, der Mess- und Regelungstechnik bis hin zu Leitungstreibern und Verstärkern für kleinere Aktoren. Die fortschreitende Entwicklung erlaubt ihren Einsatz bei immer höheren Signalfrequenzen oder mit kleinerem Energieverbrauch.

Inhaltsverzeichnis

[Bearbeiten] Geschichte

Operationsverstärker K2-W mit zwei Doppeltriodenröhren
Operationsverstärker K2-W mit zwei Doppeltriodenröhren

Die ersten Differenzverstärker wurden um 1930 mit Hilfe von Elektronenröhren aufgebaut. Zusammen mit der Rückkopplungstheorie von Harold S. Black und den Arbeiten von Harry Nyquist und Hendrik Wade Bode waren damit zu Beginn des Zweiten Weltkriegs die wesentlichen Grundlagen für Operationsverstärker vorhanden. Diese wurden in den Bell Labs zunächst für wehrtechnische Anwendungen entwickelt, wie etwa die Geschützsteuerung „M9 gun director system“[1]. Seinen englischen Namen „Operational Amplifier“ erhielt er 1947 von John Ragazzini;[2] die deutsche Bezeichnung „Operationsverstärker“ ist davon abgeleitet. [3]

Die Entwicklung nach dem Zweiten Weltkrieg verlief hin zu fertigen Modulen, zunächst noch auf Röhrenbasis, wie das Philbrick-Modell K2-W, das 1952 von der Firma George A. Philbrick Researches Inc. (GAP/R) entwickelt wurde [4]. Dieses Modul war der erste kommerziell vermarktete Operationsverstärker zu einem damaligen Preis von 20 US-Dollar und bestand aus zwei Elektronenröhren vom Typ 12AX7. Die beiden Elektronenröhren, duale Trioden, benötigten für den Betrieb eine Versorgungsspannung von ±300 V bei 4,5 mA und erlaubten eine Aussteuerbarkeit des Ausganges um ±50 V [5]. Die Firma GAP/R publizierte zu jener Zeit auch viele technische Applikationsschriften zu dem Thema wie die Firmenschrift Application Manual for Operational Amplifier for Modeling, Measuring, Manipulating, and Much Else [6], die viele Anwendungsmöglichkeiten beleuchteten und maßgeblich zu dem weiten Einsatz der Operationsverstärker beitrugen.

Als Ende der 1950er Jahre geeignete Transistoren verfügbar waren, wurden auf ihrer Basis erheblich kleinere und stromsparendere Module entwickelt, z. B. P65 und P45 von GAP/R. Diese Module verwendeten diskrete Germaniumtransistoren, der P45 war bereits auf einer gedruckten Leiterplatte realisiert [7]. Eine weitere Verkleinerung wurde durch die Hybridbauweise ermöglicht, bei der die unverpackten Transistoren als Chips zusammen mit anderen Bauelementen auf einem Keramiksubstrat montiert wurden. Ein Beispiel dafür ist der HOS-050 von Analog Devices, der mit einem TO-8-Metallgehäuse versehen war [8].

741 aus dem Jahr 1979 in einem TO-5-Metallgehäuse
741 aus dem Jahr 1979 in einem TO-5-Metallgehäuse

Mit der Entwicklung der integrierten Schaltkreise wurde die Fertigung eines kompletten Operationsverstärkers auf einem einzigen Chip möglich. Robert Widlar entwickelte bei Fairchild Semiconductor 1962 den µA702 und 1965 den µA709, der große Verbreitung fand [9]. Nach dem Weggang von Widlar wurde von Dave Fullagar 1968 bei Fairchild der Nachfolgetyp µA741 mit verbesserten Daten und Stabilität entwickelt [10]. Dieser OP ist auch heute noch unter verschiedenen Bezeichnungen wie LM741, AD741 oder TL741 von verschiedenen Firmen mit der bekannt gewordenen Ziffernfolge „741“ in Produktion.

Der erste stromgegengekoppelte Operationsverstärker wurde von David Nelson bei der Firma Comlinear, jetzt zu National Semiconductor gehörend, entwickelt [11] und zunächst in Hybridbauweise unter der Bezeichnung CLC103 verkauft. Als integrierte Schaltkreise wurden stromgegengekoppelte Operationsverstärker ab 1987 von Comlinear und Elantec angeboten.

Operationsverstärker wurden seitdem in ihrem mechanischen und elektrischen Eigenschaften weiter verbessert und für viele Anwendungen in der analogen Schaltungstechnik optimiert, so kommen je nach Erfordernis verschiedenen Transistortypen wie Bipolartransistoren, JFETs und MOSFETs zu Einsatz. Mit zunehmenden Stückzahlen sank auch der Preis der Operationsverstärker. Herstellerübergreifende Typen, wie der vierfache Operationsverstärker LM324, sind für wenige Cent erhältlich.

[Bearbeiten] Funktionen

Bei niedrigen Frequenzen wird bei einem herkömmlichen, spannungsgesteuerten Operationsverstärker die zwischen den beiden Differenzeingängen U+in und U−in anliegende Spannung mit der so genannten Geradeausverstärkung Ggv (auch Leerlaufverstärkung) verstärkt und am Ausgang ausgegeben. Die folgende Gleichung beschreibt dieses Verhalten:

U_{mathrm{Ausgang}} = left( U_{+_{in}} - U_{-_{in}} right) cdot G_{gv}

Die meist sehr große Geradeausverstärkung Ggv, üblich sind Werte von über 10.000, bildet die obere Grenze der Verstärkung. Sie ist aber starken Exemplarstreuungen unterworfen, hängt vom jeweiligen Operationsverstärkertyp ab, ist temperaturabhängig und verringert sich zu höheren Frequenzen hin. Aufgrund der Schwankungen der Geradeausverstärkung wird der Operationsverstärker in dieser Betriebsart nur als Komparator zum Vergleichen von Spannungsdifferenzen verwendet: Schon kleine Spannungsdifferenzen am Eingang ergeben je nach Polarität die maximale oder minimale Ausgangsspannung.

Für den linearen Betrieb ist eine Außenbeschaltung des Operationsverstärkers notwendig, ein so genanntes Rückkopplungsnetzwerk, das aus verschiedenen Bauelementen bestehen kann. Je nachdem auf welchen der beiden Eingänge durch die externe Beschaltung ein Teil der Ausgangsspannung zurückgeführt wird, entsteht entweder eine Mitkopplung oder eine Gegenkopplung. Die für den Operationsverstärker wichtige Gegenkopplung reduziert die Gesamtverstärkung der Schaltung, bestehend aus OP und Rückkopplungsnetzwerk, und legt ein genaues Betriebsverhalten der gesamten Schaltung fest.

Durch unterschiedliche Außenbeschaltungen des Operationsverstärkers lassen sich ganz unterschiedliche Funktionen realisieren, was die Vielseitigkeit dieses Bauteils begründet. Beispielsweise kann ein analoges Filter realisiert werden, das bestimmte Frequenzen stärker oder schwächer verstärkt (Hochpass, Tiefpass) oder die mit diesen Filtertypen eng verwandten mathematischen Funktionen wie Integrator und Differenzierer. Es können auch Addierer und Subtrahierer konstruiert werden, die Spannungen als analoge Größe addieren oder subtrahieren. Oder einfach nur eine Verstärkerschaltung, die ein Signal mit einer exakt definierten Verstärkung verstärkt.

[Bearbeiten] Gegenkopplung

Die für den Betrieb eines OP wichtige Gegenkopplung (negative Rückkopplung) ist ein Begriff aus dem Bereich der Regelungstechnik und beschreibt einen Regelkreis, der in diesem Fall aus dem OP im Vorwärtszweig und der externen Beschaltung als Rückwärtszweig besteht. Dieser externe Rückkopplungszweig führt dabei einen Teil der Ausgangsspannung zurück zu den Eingängen. Da der OP zwei Eingänge besitzt, einen positiven und einen negativen, erfolgt bei der Gegenkopplung die Rückleitung meistens an den negativen OP-Eingang.

Durch die Gegenkopplung wird bei einem idealen OP die Spannungsdifferenz zwischen den beiden Eingängen immer auf Null gehalten: Der Ausgang wird vom OP gerade so ausgesteuert, dass sich durch das Rückkopplungsnetzwerk zwischen den beiden Eingängen keine Spannungsdifferenz bilden kann. Dadurch tritt eine Beschränkung der maximalen Verstärkung ein, die gesamte Schaltung bestehend aus OP und externer Beschaltung kann stabil betrieben werden.

[Bearbeiten] Mitkopplung

Die Mitkopplung (positive Rückkopplung) spielt in der Schaltungstechnik des Operationsverstärkers eine eher untergeordnete Rolle. Dabei wird ein Teil des Ausgangssignals an den positiven Eingang des OP zurückgeführt. Dadurch kommt es zu einer immer weiteren Verstärkung. Bei dem stark vereinfachten Modell des idealen OP würde dabei die Ausgangsspannung über alle Grenzen ansteigen, was real nicht möglich ist. Bei einem realen OP kommt es zur so genannten Sättigung: Die Ausgangsspannung wird durch die obere oder untere Versorgungsspannung limitiert.

Verwendet wird die Mitkopplung bei Oszillatorschaltungen wie dem Wien-Robinson-Oszillator zur Erzeugung von Schwingungen bis zu Frequenzen von einigen wenigen MHz.

Darüber hinaus wird die Mitkopplung bei speziell modifizierten OPs, den Komparatoren, eingesetzt. Bei einem Komparator werden zwei Spannungen an den Eingängen miteinander verglichen und je nachdem, ob die eine Spannung größer ist als die andere, wird der Ausgang in Sättigung voll positiv oder negativ ausgesteuert. Ein linearer Betrieb wie bei der Gegenkopplung ist dabei nicht möglich. Um das Umschalten zwischen den beiden Schaltzuständen zu beschleunigen und ein Oszillieren zu verhindern, wird mit einer Mitkopplung eine Hysterese erzeugt. Ein daraus gebildeter Komparator mit Mitkopplung wird Schmitt-Trigger genannt.

[Bearbeiten] Aufbau und Varianten

Es gibt unterschiedliche Typen von Operationsverstärkern die sich durch ihre hoch- bzw. niederohmigen Ein- und Ausgänge voneinander unterscheiden. Der nicht invertierende (positive) Eingang ist bei allen Typen als hochohmiger Spannungseingang ausgeführt. Der invertierende (negative) Eingang ist je nach Typ entweder ein hochohmiger Spannungseingang oder ein niederohmiger Stromeingang. Ebenso kann der Typ des Ausganges entweder als ein niederohmiger Spannungsausgang oder als ein hochohmiger Stromausgang ausgeführt sein. Dadurch ergeben sich in Summe vier verschiedene Schaltungskonfigurationen, wie in der folgenden Tabelle dargestellt.

Spannungs-Ausgang Strom-Ausgang
Spannungs-Eingang (Herkömmlicher) Operationsverstärker (VV-OPV)
Bild:VV-OPV.svg

Ua=AD UD

Transkonduktanzverstärker (VC-OPV)
Bild:VC-OPV.svg

Ia = SD UD

Strom-Eingang Stromrückgekoppelter Operationsverstärker (CV-OPV)
Bild:CV-OPV.svg

Ua = IN Z = AD UD

Strom-Verstärker (CC-OPV)
Bild:CC-OPV.svg

Ia = kl IN = SD UD

[Bearbeiten] Herkömmlicher Operationsverstärker (VV-OP)

Bei dem herkömmlichen Operationsverstärker oder VV-OP (engl. voltage feedback OpAmp) sind beide Eingänge hochohmige Spannungseingänge und sein Ausgang verhält sich wie eine möglichst niederohmige Spannungsquelle. In der Anfangszeit der OPs gab es am Markt nur diesen Typ und auch heute noch nimmt diese Klasse den größten Marktanteil ein. Auch in diesem Artikel wird meistens nur dieser Typ von OP referenziert. Der Vorteil ist seine geringe Offsetspannung und hohe Präzision bei niedrigen Frequenzen. Nachteilig sind die Stabilitätsprobleme, vor allem bei kapazitiven Lasten im dynamischen Betrieb. Typische Vertreter dieser Klasse sind der Urahn µA741 oder der OP177 von Analog Devices.

Vereinfachte Innenbeschaltung eines OPs
Vereinfachte Innenbeschaltung eines OPs

Integrierte OPs bestehen aus einer Vielzahl von unterschiedlichen Stufen und Schaltungsteilen, um verschiedene Anforderungen erfüllen zu können. Trotzdem lassen sich alle diese unterschiedlichen Varianten im Wesentlichen auf drei Schaltungsteile reduzieren, wie in nebenstehender Abbildung dargestellt:

  • Ein differentieller Eingang, in der Schaltskizze als gelber Bereich dargestellt. Dieser Teil besteht aus einem Differenzverstärker und den beiden Eingängen, im oberen Bereich dargestellt, und einer Konstantstromquelle im unteren Bereich. Der Differenzverstärker wandelt kleine Spannungsdifferenzen in einen proportionalen Ausgangsstrom um. Bei einem herkömmlichen OP stellt diese Stufe auch den hohen Eingangswiderstand sicher. Die Eingangstransistoren können je nach Technologie Bipolartransistoren, MOSFETs oder JFETs sein. Die unterschiedlichen Transistortypen wirken sich unter anderem auf die Größe des Rauschens aus.
  • Eine Verstärkerstufe, orange hinterlegt dargestellt, die den kleinen Eingangstrom von der Eingangsstufe in eine hohe Ausgangsspannung umsetzt. Die hohe Geradeausverstärkung des OPs resultiert überwiegend aus dieser Stufe. Der in der Stufe zur internen frequenzabhängigen Gegenkopplung eingezeichnete Kondensator sorgt ab einer bestimmten Frequenz für einen gleichmäßigen Abfall der Geradeausverstärkung reziprok zu der Frequenz. Diese interne Gegenkopplung ist notwendig, um die Stabilität des Operationsverstärkers mit einer externen Gegenkopplung zu gewährleisten, wie im Stabilitätskriterium von Nyquist gefordert.
  • Eine Ausgangsstufe, blau hinterlegt. Diese Stufe ist oft als Gegentaktstufe (engl. push-pull) realisiert und besitzt im Gegensatz zu den beiden vorherigen Stufen keine Spannungsverstärkung mehr. Sie dient als Stromtreiber für den Ausgang, besitzt einen kleinen Ausgangswiderstand und ermöglicht so einen hohen Ausgangsstrom.

Das Kleinsignalverhalten dieser Schaltung beschreibt die Gleichung


U_a = U_d cdot frac{A_0}{1+jomega/omega_C},;;;;omega_C=2pifrac{GBP}{A_0},

wobei Ud die Eingangsspannungsdifferenz, Ua die Ausgangsspannung, A0 die Geradeausverstärkung bei kleinen Frequenzen und GBP das Verstärkungs-Bandbreiteprodukt symbolisieren. ωC bezeichnet die Kreisfrequenz.

[Bearbeiten] Innenschaltung des µA741

Innenschaltung des µA741-Operationsverstärkers
Innenschaltung des µA741-Operationsverstärkers

Um die Komplexität realer OP im Vergleich zu dem vereinfachten Modell darzustellen, ist nachfolgend die Innenschaltung des bereits als historisch zu bezeichnenden Operationsverstärkers µA741 abgebildet. Dieser integrierte Schaltkreis (IC) wurde 1968 entwickelt und spiegelt den Stand der damaligen Technologie wider. Er wird auch heute noch für bestehende elektronische Geräte neu produziert und ist einer der bekanntesten und am meisten eingesetzten Operationsverstärker.

Der links eingezeichnete blau umrandete Bereich stellt die Eingangsstufe (Differenzverstärker) mit Konstantstromquelle dar. Zum Abgleich von fertigungsbedingten Fehlern (Offsetfehlern) sind in dieser Stufe zusätzliche Anschlüsse herausgeführt, woran ein externes Potentiometer zum Abgleich angeschlossen werden kann. Die drei rot umrandeten Bereiche stellen für die verschiedenen Stufen Stromspiegel dar. Stromspiegel sind stromgesteuerte Stromquellen und dienen in diesem Fall zur Versorgung der Verstärkerstufen.

Der magenta umrandete Bereich ist die primäre Spannungsverstärkerstufe, bestehend aus einer Darlington-Schaltung mit zwei Transistoren. Der grün umrandete Bereich erzeugt eine Vorspannung für die rechts außen türkis umrandete Ausgangsstufe. Der in der Mitte eingezeichnete Kondensator mit 30 pF dient der Frequenzkompensation. Die Fertigung dieses Kondensators direkt auf dem Siliziumchip stellte damals eine wesentliche Innovation in der Halbleiterfertigung dar.

[Bearbeiten] Stromrückgekoppelter Operationsverstärker (CV-OP)

Vereinfachte Innenbeschaltung eines CV-Operationsverstärkers
Vereinfachte Innenbeschaltung eines CV-Operationsverstärkers

Bei dem stromrückgekoppelten Operationsverstärker, abgekürzt CV-OP (engl. current feedback amplifier, abgek. CFB) ist der invertierte Eingang ein niederohmiger Stromeingang und der Ausgang eine möglichst niederohmige Spannungsquelle. Ein Vorteil ist seine hohe Bandbreite, die den Einsatz etwa als Videoverstärker erlaubt. Ein Nachteil ist eine relativ hohe Offsetspannung. Ein typischer Vertreter dieser Klasse ist der Baustein CLC449 von National Semiconductor.

Nebenstehende Abbildung zeigt die einfache Innenbeschaltung eines stromrückgekoppelten Operationsverstärkers. Im Gegensatz zu den in den vorherigen Kapiteln dargestellten herkömmlichen OPs mit Spannungseingängen ist der niederohmige Stromeingang in der gelb hinterlegten Eingangsstufe direkt an die Emitter der Eingangstransistoren angeschlossen. Die orange hinterlegte Verstärkerstufe in der Mitte besteht aus zwei Stromspiegeln, die die blau hinterlegte Gegentaktausgangsstufe ansteuern.
Das Kleinsignalverhalten ergibt sich zu  U_a = I_-frac{G}{1+jomega/omega_c}, was zusammen mit dem Gegenkopplungsnetzwerk, betrachtet als Spannungsquelle U- mit dem Ausgangswiderstand RF, zu U_a = U_dfrac{G/R_F}{1+jomega/omega_c} führt: Die Vorwärtsverstärkung lässt sich durch die Impedanz des Gegenkopplungsnetzwerkes steuern, je niedriger die Impedanz ist, umso größer ist die Vorwärtsverstärkung.

[Bearbeiten] Transkonduktanz-Operationsverstärker (VC-OP)

Bei dem Transkonduktanz-Operationsverstärker oder VC-OP (engl. operational transconductance amplifier, abgek. OTA) sind beide Eingänge hochohmig und der Ausgang verhält sich wie eine möglichst hochohmige Stromquelle, deren Strom durch die Spannungsdifferenz an den Eingängen gesteuert wird. Einer seiner Vorteile ist – neben geringer Offsetspannung – die Möglichkeit, kapazitive Lasten dynamisch treiben zu können. Der Nachteil besteht darin, dass die Last bei der Schaltungsdimensionierung bekannt sein muss. Ein Baustein aus dieser Klasse ist der LM13700 von National Semiconductor.

[Bearbeiten] Strom-Verstärker (CC-OP)

Der Strom-Verstärker oder CC-OP (engl. diamond transistor) besitzt einen niederohmigen und invertierten Stromeingang und einen möglichst hochohmigen Stromausgang. Dieser Typ von OP verhält sich in Näherung fast wie ein idealer Bipolartransistor. Vorteile sind – neben der hohen Bandbreite – die Fähigkeit, als Stromtreiber beispielsweise für Laserdioden einsetzbar zu sein. Nachteilig ist wie beim VC-OP, dass bei der Dimensionierung der Stromgegenkopplung die Last bekannt sein muss. Ein Vertreter dieser Klasse ist der OPA660 von Burr Brown (heute Texas Instruments).

[Bearbeiten] Schaltungstechnische Modelle

Zur Schaltungsanalyse und Schaltungsimulation werden unterschiedlich komplexe Modelle des Operationsverstärkers verwendet. Diese Modelle reichen vom einfachen idealen Operationsverstärker bis zu sehr komplexen Beschreibungen spezifischer Eigenschaften bestimmter Operationsverstärkertypen. Anwendung finden diese Modelle beispielsweise in Schaltungssimulationsprogrammen wie SPICE.

[Bearbeiten] Idealer Operationsverstärker

Der ideale Operationsverstärker ist ein stark vereinfachtes Modell, in dem alle parasitären Eigenschaften realer Operationsverstärker vernachlässigt werden. Daher wird er vor allem bei einfachen Schaltungsberechnungen und Überschlagsrechnungen verwendet. Für komplexere Schaltungsberechnungen ist der ideale Operationsverstärker allerdings meistens ein zu stark vereinfachtes Modell.

Für ideale spannungsgesteuerte OPs werden unter anderem folgende idealisierte Parameter angenommen:

  • Eingangswiderstand unendlich hoch, Ausgangswiderstand null.
  • Geradeausverstärkung unendlich hoch und frequenzunabhängig.
  • Alle Offset-Spannungen und Leckströme sind null.
  • Keinerlei Rauschen und eine unendlich hohe Anstiegsrate (engl. slew rate).

[Bearbeiten] Realer Operationsverstärker

Der reale OP versucht sich dem Modell des idealen OP anzunähern. Durch physikalische Grenzen wie eine maximale Versorgungsspannung, aber auch Fertigungstoleranzen, durch Unreinheiten im Halbleitermaterial, durch Produktionsschwankungen und ähnliches mehr ergeben sich jedoch Abweichungen von dem idealen Verhalten.

Je nach Genauigkeit des Modells können auch bei einem realen OP bestimmte Parameter vernachlässigt werden. So können für die meisten einfacheren Schaltungen die Leckströme und Offsetspannung vernachlässigt werden.

Als besonders wichtige Eigenschaft des realen Operationsverstärkers ist die begrenzte Anstiegsrate zu nennen, da der Operationsverstärker in einem Bereich von U+ - U- um null Volt ein nahezu lineares Anstiegsverhalten zeigt. Somit lässt er sich als Verstärker nutzen.

[Bearbeiten] Anwendungsbeispiele

Der OP besitzt eine große Bandbreite an möglichen Anwendungen, beispielsweise in Analogfiltern, Analog-Digital-Umsetzern, in verschiedenen Verstärkerstufen, z. B. Vorverstärker und in Stufen zur analogen Signalverarbeitung.

Bei den im Nachfolgenden genannten einfachen Schaltungen, welche die Grundlage vieler Anwendungen von OP bilden, wird aus Gründen der Übersichtlichkeit immer von einem idealen, spannungsgesteuerten Operationsverstärker ausgegangen. Die eigentliche Funktion wird dabei lediglich durch die externe Beschaltung bestimmt.

[Bearbeiten] Invertierender Verstärker

Diese Schaltung verstärkt die Eingangsspannung Ue mit dem Spannungsverstärkungsfaktor v = - { R_2 over R_1} und gibt die Ausgangsspannung Ua aus:

Schaltbild eines invertierenden Verstärkers
Schaltbild eines invertierenden Verstärkers
U_a = v cdot U_e = -{ R_2 over R_1} cdot U_e

Der Operationsverstärker steuert bei der Gegenkopplung seinen Ausgang so aus, dass die Differenzspannung an seinen Eingängen auf Null gehalten wird. In der angegebenen Beschaltung kann deshalb angenommen werden, dass sich am invertierenden Eingang (-) Massepotential einstellt. Dieser Spannungsknoten wird in der Fachsprache auch als virtuelle Masse bezeichnet. Der Widerstand R1 liegt dann zwischen Eingangsspannung und Masse und R2 zwischen Ausgangsspannung und Masse. Da weiterhin angenommen werden kann, dass kein Strom in den invertierenden Eingang (-) fließt, muss der gesamte Strom I, der sich in R1 einstellt, auch in R2 fließen und an R2 eine Spannung hervorrufen, die wiederum mit der Ausgangsspannung identisch ist:

U_a = - U_{R2} = - I cdot R_2 = - { U_e over R_1} cdot R_2 = - { R_2 over R_1} cdot U_e

Der Eingangswiderstand dieser Schaltung ist gleich R1.

[Bearbeiten] Invertierender Addierer/Summierverstärker

Schaltbild eines Addierers
Schaltbild eines Addierers

Die Schaltung ist eng mit dem invertierenden Verstärker verwandt, dieser ist jedoch um mehrere Eingänge erweitert.

Die Bezeichnung Addierer hat sich eingebürgert, obwohl das Vorzeichen der Summe durch die Schaltung geändert wird. Die Eingangsspannungen U_{e1}, U_{e2}, ldots U_{en} werden aufsummiert und verstärkt. An jedem Eingang gibt es einen Eingangswiderstand, durch den sich die einzelnen zu addierenden Spannungen unterschiedlich gewichten lassen. Diese Schaltung kann mit einer beliebigen Anzahl von Eingängen (Summanden) genutzt werden.

Die Gleichung für die Ausgangsspannung Ua ergibt sich für die rechts dargestellte Schaltung mit drei Eingängen zu:

U_{a} =  - R_{2} cdot { left({U_{e_1} over R_{11}} + {U_{e_2} over R_{12}} + {U_{e_3} over R_{13}} right) }

[Bearbeiten] Strom-Spannungs-Wandler

Schaltbild eines Strom-Spannungs-Wandlers
Schaltbild eines Strom-Spannungs-Wandlers

Der Strom-Spannungs-Wandler, die Schaltung wird auch als Transimpedanzverstärker bezeichnet, wandelt einen Eingangsstrom Ie in eine proportionale Spannung Ua um. Die Schaltung besitzt einen niedrigen (differentiellen) Eingangswiderstand und wird häufig zur Verstärkung von Signalen aus Stromquellen verwendet.

Mit dem Widerstand R als Proportionalitätsfaktor lässt sich das Verhältnis von Eingangsstrom zu Ausgangspannung einstellen:

U_a = -R cdot I_e


[Bearbeiten] Nichtinvertierender Verstärker (Elektrometerverstärker)

Schaltbild eines nichtinvertierenden Verstärkers
Schaltbild eines nichtinvertierenden Verstärkers

Diese Schaltung ist mit dem invertierenden Verstärker vergleichbar, verändert die Polarität (Vorzeichen) der Eingangsspannung jedoch nicht. Auch in dieser Schaltung wird ein Teil der Ausgangsspannung auf den invertierenden Eingang zurückgeführt, allerdings mittels eines Spannungsteilers, der aus den beiden Widerständen R1 und R2 besteht. Mit den Regeln zur Berechnung des Spannungsteilers lässt sich die Verstärkung v dieser Schaltung bestimmen zu:

v = 1 + {R_2 over R_1}

was zu der Ausgangsspannung Ua führt:


U_a = v cdot U_e = left[1+ {R_2 over R_1}right] cdot U_e

Die Bezeichnung Elektrometerverstärker hat diese Schaltung aufgrund ihres sehr hohen Eingangswiderstands.

[Bearbeiten] Impedanzwandler

Schaltbild eines Impedanzwandlers
Schaltbild eines Impedanzwandlers

Die Impedanzwandler oder Spannungsfolger genannte Schaltung stellt eine Variante des nichtinvertierenden Verstärkers dar. Der invertierende Eingang ist direkt mit dem Ausgang verbunden, d. h. R2 hat den Extremwert Null. Damit ergibt sich in obiger Gleichung für die Spannungsverstärkung der Wert v = 1.

Der Wert von R1 kann aus mathematischen Gründen theoretisch nun beliebig sein. Der Extremwert infty wäre eine Unterbrechung, bzw. Nicht-Existenz. Aus praktischen Gründen kann R1 nicht beliebig klein sein, da sonst der zulässige Ausgangsstrom des ICs erreicht wird, die meist vorhandene Kurzschlusssicherung anspricht und die Schaltung dann nicht mehr wie erforderlich arbeitet.

Seine Ausgangsspannung entspricht bei normaler Funktion genau der Eingangsspannung, wovon sich auch der Name Spannungsfolger ableitet: Die Ausgangsspannung folgt direkt der Eingangsspannung.

Da der Eingangswiderstand des positiven Eingangs sehr groß und im Vergleich dazu der Ausgangswiderstand sehr klein ist, daher auch die Bezeichnung Impedanzwandler, kann diese Schaltung ideal als Puffer zwischen einer hochohmigen Spannungsquelle und einer nachfolgenden niederohmigen Last eingesetzt werden. Damit wird die hochohmige Spannungsquelle am Eingang minimal belastet und in der Spannungshöhe kaum verfälscht.

Wird der Rückkopplungspfad alternativ durch einen Widerstand gebildet, der den Strom in den Minuseingang und damit die Vorwärtsverstärkung begrenzt, eignet sich die Schaltung auch für einen CV-OP.

[Bearbeiten] Differenzverstärker / Subtrahierverstärker

Schaltbild eines Differenzverstärkers
Schaltbild eines Differenzverstärkers
Hauptartikel: Subtrahierer

Bei einem Differenzverstärker wird der Operationsverstärker so beschaltet, dass er gleichzeitig wie ein invertierender und ein nichtinvertierender Verstärker funktioniert. Sind die beiden Widerstände R1=R3 und R2=R4 identisch, so ist die Ausgangsspannung gleich der Differenz der Eingangsspannungen, multipliziert mit dem Faktor R2 / R1:


U_{a} = {R_2 over R_1} cdot (U_{e+}-U_{e-}),

mit dem Sonderfall Ua = Ue+ - Ue- für R1=R2.

exakte Formel:

 U_{a} = U_{e+} left( { left( R_1 + R_2 right) R_4 over left( R_3 + R_4 right) R_1} right) - U_{e-} left( {R_2 over R_1} right)


Eine wichtige Anwendung ist die Umsetzung von symmetrischen Signalen auf ein massebezogenes Signal. Dabei können Störungen, die additiv auf den beiden symmetrischen Signalen vorhanden sind, beseitigt werden. Voraussetzung ist hierfür, dass die Verhältnisse der Widerstände, einschließlich der Innenwiderstände der Signalquellen, möglichst exakt realisiert werden. Deshalb gibt es eine Reihe von integrierten Schaltungen, bei denen die Widerstände mit hoher Präzision enthalten sind.

[
Urheberrecht
Wikipedia Logo Text und Bilder der Lexikonartikel stammen aus der freien Enzyklopädie Wikipedia und stehen unter der GNU Free Documentation License.

Copyright © 2005-2010 Hardware-Aktuell. Alle Rechte vorbehalten.