Ein Touchscreen, Tastschirm bzw. Sensorbildschirm ist ein Computereingabegerät, bei dem durch Berührung von Teilen eines Bildes der Programmablauf eines technischen Gerätes, meist eines Computers, scheinbar direkt gesteuert werden kann. Die technische Umsetzung der Befehlseingabe ist für den Nutzer quasi „unsichtbar“, und erzeugt so den Eindruck einer unmittelbaren Steuerung eines Computers per „Fingerzeig“. Das durch den Touchscreen „berührungsempfindliche“ Bild kann dabei sowohl dynamisch mittels Monitoren oder über Projektion, als auch physikalisch (z. B. gedruckt) generiert worden sein.
Statt einen Cursor per Maus o. Ä. zu steuern, kann der Finger oder ein Zeigestift verwendet werden. Die Anzeige eines Cursors wird damit überflüssig.
Die Analogie zum Mausklick ist ein kurzes Tippen. Durch Ziehen des Fingers oder Stiftes über den Touchscreen kann eine Drag-&-Drop-Operation ausgeführt werden. Manche Systeme können sogar mehrere gleichzeitige Berührungen zu Befehlen verarbeiten um z. B. angezeigte Elemente zu drehen oder zu skalieren. Hierfür siehe Multi-Touch.
Inhaltsverzeichnis |
Touchscreens finden als Info-Monitore, z. B. auf Messen, zur Orientierung in großen Kaufhäusern oder für die Fahrplanauskunft auf Bahnhöfen Verwendung. Hin und wieder sind auch in den Schaufenstern von Apotheken oder Reiseveranstaltern Touchscreens zu finden, über die detaillierte Informationen abgerufen werden können. Darüber hinaus werden Touchscreens auch bei Spielautomaten und Arcade Games eingesetzt. Oft werden sie auch für die Steuerung von Maschinen in der Industrie eingesetzt (Industrie-PCs), hier insbesondere da sie weniger schmutzanfällig sind als andere Eingabegeräte wie Tastaturen. Bei manchen Banken gibt es auch Geldautomaten mit Touchscreen-Display. In Banken werden sie immer öfter für Überweisungsterminals eingesetzt, wobei die SAW-Technik (Surface Acoustic Wave) zum Einsatz kommt, weil diese relativ vandalensicher ist. Durch ihre Glasoberfläche verkratzt und beschädigt sie nicht so schnell wie beispielsweise resistive Systeme mit ITO-Folie als Oberfläche.
Touchscreen-Terminals, die zur öffentlichen Informationsweitergabe eingesetzt werden, werden in der IT-Branche als Point of information oder abgekürzt, POI, bezeichnet. Terminals, die zum Verkauf dienen, werden Point of sale, oder abgekürzt POS genannt. Letztere haben sich entgegen der hohen Erwartung der Wirtschaft und der IT-Branche nur eingeschränkt durchgesetzt. Gründe dafür sind neben dem Wartungsaufwand für die Geräte oft die mangelnde Anpassung der Software an die besonderen Bedienungsbedingungen der Touchscreengeräte, oder oft schlicht auch die unergonomische und unattraktive Software und fehlender Nutzen für die Bediener. Einzige Ausnahme sind Hersteller wie z. B. die Vectron Systems AG, die sich auf spezielle Branchen wie z. B. der Gastronomie sowie Bäckereibetriebe spezialisiert haben und den Nachteil durch Branchenanpassung überbrückt haben.
In neueren, modernen Autos werden immer öfter Multifunktionsdisplays als Touchscreen ausgelegt. Neue Techniken bieten hier sogar eine elektronisch erzeugte, taktile Wahrnehmbarkeit.
In Heimsystemen sind Touchscreens kaum verbreitet, einzig im Bereich der PDAs, Tablet PCs und bei der Spielkonsole Nintendo DS sind sie in größerem Einsatz. Die hier zur Vermeidung von auf dem kleinen Bildschirm störenden Fingerabdrücken eingesetzten Stylus sind aber recht unökonomisch und führen oft bei stärkerem Gebrauch zu einem Verkratzen des Touchscreens. Das Problem lässt sich bisher nur mit besonders weichen Stylus oder Aufkleben einer Schutzfolie lösen.
Ein Touchscreen muss nicht zwingend vor ein Display montiert werden, auch die Verwendung als Ersatz einer Folientastatur ist möglich. Hierzu wird hinter den Touchscreen (an der Stelle an der normalerweise der Computerbildschirm sitzt) eine bedruckte (Polyester-) Folie aufgebracht. Es gibt verschiedene Ansätze Touchscreens komplett von physikalischen Monitoren zu lösen, um auch Projektionen von Benutzeroberflächen interaktiv nutzbar zu machen. Beispiel hierzu ist das inzwischen wieder eingestellte „Virtual Touchscreen“ von Siemens, oder verschiedene Systeme des Fraunhoferinstituts.
Es gibt mehrere Funktionsprinzipien zur Umsetzung der Berührungsempfindlichkeit:
Analoge Systeme bestehen aus zwei gegenüberliegenden leitfähigen Indiumzinnoxidschichten (ITO) (x und y Schicht), die mit einer konstanten Gleichspannung angesteuert werden. Bei Indiumzinnoxid handelt es sich um ein transparentes, halbleitendes Material.
Zwischen den zwei ITO-Schichten befinden sich viele kleine und kaum sichtbare Abstandshalter, so genannte Spacer-Dots (direkt übersetzt -> Abstands-Punkte), die eine Trennung der zwei Schichten garantieren.
Bei 4-Wire-Systems (4-Draht-Systemen) verfügt der Touchscreen über vier Leitungen zum Controller, zwei für jede Achse.
Berührt man den Touchscreen an einer bestimmten Stelle, so berühren sich dort die zwei ITO-Schichten, wodurch ein elektrischer Kontakt entsteht. Durch den Widerstand dieses Kontaktes entsteht an jeder Stelle eine unterschiedliche Spannung. Die Spannungsänderung kann dann zur Bestimmung der Koordinaten x und y benutzt werden.
Das Controllerboard (elektronisches Bauteil, das den Controller für den Touchscreen enthält, meistens USB oder RS232 Schnittstelle) regelt hier die Kommunikation zwischen Computer und Touchscreen, die richtige Position wird mit Hilfe der dazugehörigen Softwaretreiber bestimmt. Der analoge Touchscreen arbeitet sehr genau und bietet eine hohe Auflösung. Die Mindestlebensdauer beträgt in der Regel (je nach Qualität) mehr als 3 Millionen Berührungen.
Einige wenige Hersteller haben darüber hinaus eine Technik entwickelt, bei der die Oberfläche aus Folie durch eine aus Glas ersetzt wird. Dies nennt sich „Glas-Glas-Touchscreen“. Hier ist eine höhere Vandalensicherheit und eine kratzsicherere Oberfläche gegeben.
Wie bereits beschrieben, besteht ein resistiver Touchscreen aus zwei leitfähigen Schichten, welche sich am Druckpunkt (auch als cursorfocus bezeichnet) berühren. Somit ergibt sich sowohl in der oberen Schicht als auch in der unteren Schicht ein Spannungsteiler, welcher im Beispielbild eingezeichnet ist. Das Verhältnis der Widerstände R1 zu R2 ergibt die Position des Druckpunktes in x-Richtung. Um das Teilerverhältnis zu bestimmen, wird durch den Touchscreencontroller an U(x1) und U(x2) jeweils eine andere bekannte Spannung gelegt. Somit fließt über R1 und R2 ein Strom. An U(y3) oder U(y4) kann dann hochohmig die resultierende Spannung des Spannungsteilers gemessen werden. Hochohmig, damit an R3 oder R4 keine Spannung abfällt, welche das gewünschte Messergebnis verfälschen würde.
z. B. ; ; aufgrund der Position des Druckpunktes; x-Richtung von U(x2) nach U(x1)
Entsprechend ergibt das Verhältnis R3 zu R4 die Position in y-Richtung. Hier wird also an U(y3) und U(y4) eine Spannung angelegt und an U(x1) oder U(x2) hochohmig gemessen. Aufgrund der Funktionsweise, ständig wechselnd x-Position und y-Position bestimmend, strahlt ein resistiver Touchscreen ein Störsignal aus (EMV) bzw. ist aufgrund seiner hochohmigen Oberfläche EMV-empfindlich.
Bei 5-wire resisitive Touchscreen wird die Ungenauigkeit durch Materialinhomogenitäten sowie der Einfluss von Leckströmen auf der Messelektrode verringert, indem nur die rückwärtige Elektrode (aus Glas) widerstandsbeschichtet ist, während die Frontfolie ideal leitet. Die Ecken der Rückelektrode werden kontaktiert, die Frontelektrode dient nur noch als Messelektrode für den Spannungsteiler, so dass dort eventuelle Leckströme der Messeinrichtung keinen Spannungsabfall bewirken können. Im ersten Zyklus werden die beiden oberen Ecken (A und B) verbunden und mit Spannung versorgt, die beiden unteren Ecken (C und D) werden auf Masse gelegt. So erhält man eine vertikale Position. Im zweiten Zyklus werden die beiden linken Ecken (A und C) verbunden, die beiden rechten (B und D) auf Masse gelegt, wodurch die horizontale Position abgeleitet wird.
Kapazitive Touchscreens sind mit durchsichtigem Metalloxid beschichtete Glassubstrate. Eine an den Ecken der Beschichtung angelegte Spannung erzeugt ein exaktes, gleichmäßiges elektrisches Feld. Es entsteht ein geringer Ladungstransport der im Entladezyklus in Form eines Stromes an den Ecken gemessen wird. Die resultierenden Ströme aus den Ecken stehen im direkten Verhältnis zu der Touchposition. Der Controller verarbeitet die Informationen.