Steckverbinder

Koaxiale Steckverbinder für Hochfrequenzanwendungen

aus Wikipedia, der freien Enzyklopädie

(Weitergeleitet von SMA-Steckverbinder)
Wechseln zu: Navigation, Suche
Belling-Lee-Stecker des Kabelfernsehens
Belling-Lee-Stecker des Kabelfernsehens

Koaxiale Steckverbinder dienen der lösbaren Verbindung von Koaxialkabeln.

Sie sind wie diese koaxial ausgeführt, um so die Vorteile der Koaxialkabel zu erhalten: extrem geringe elektromagnetische Beeinflussung/Abstrahlung bzw. gute elektrische Abschirmung.

Inhaltsverzeichnis

[Bearbeiten] Kenngrößen

Insbesondere bei hohen Frequenzen müssen Koaxialstecker über den gesamten Steckeraufbau hinweg möglichst einen konstanten Leitungswellenwiderstand aufweisen. Das bedeutet, dass Innen- und Außenleiter ein bestimmtes Durchmesserverhältnis zueinander haben müssen und das Dielektrikum (Isolierstoff) auf diese Impedanz und die maximale Arbeitsfrequenz abgestimmt sein muss. Daher ist die Impedanz ZL eines koaxialen Steckverbinders eine wesentliche Kenngröße. Sie ergibt sich aus dem Durchmesserverhältnis zwischen Innenstift (d) und Hülse (D) und der Permittivität des Dielektrikums εr. Mit der Permeabilität µ0 und der Permittivität ε0, sowie der (durch Definition) exakt bekannten (Vakuum-)Lichtgeschwindigkeit c0

mu_0 = 4 pi cdot 10^{-7} frac{H}{m}

 varepsilon_0 = frac{1}{mu_0cdot c_0^{2}}
c_0=299,792,458,frac{rm m}{rm s} = 2{,}997,924,58cdot 10^8,frac{rm m}{rm s}

lässt sich der Leitungswellenwiderstand aus der Leitungsgeometrie berechnen.

Querschnitt einer Luftleitung

Z_L = frac{Z_{rm 0}}{2pisqrt{varepsilon_{rm r}}}cdot ln left( frac{D}{d}right)

mit


Z_{rm 0} = sqrt frac{mu_0}{varepsilon_0} = mu_0 cdot c_0 = 4 cdot pi cdot 10^{-7} cdot 2{,}997,924,58cdot 10^8~Omega = 376{,}730,313,5...~Omega

Aus der obigen Gleichung lässt sich ableiten, dass der Innenstift von 75-Ohm-Steckern bei gleichem Isolierstoff dünner sein muss als bei 50-Ohm-Steckern gleicher Baugröße. Bei Frequenzen bis in den MHz-Bereich kann man bestimmte Abweichungen der Impedanz in Kauf nehmen, ohne dass es zu nennenswerten Verlusten oder Reflexionen an den dadurch entstehenden sogenannten Stoßstellen kommt.

Weitere Kenngrößen sind die maximal übertragbare Frequenz, die bei einer bestimmten Frequenz maximal übertragbare Hochfrequenz-Leistung und die Einfügedämpfung bzw. der Reflexionsfaktor.

Es werden viele verschiedene koaxiale Steckverbinder für Hochfrequenzanwendungen gefertigt, bestimmte Bauformen haben sich jedoch für verschiedene Anwendungen durchgesetzt.

[Bearbeiten] Bauformen und Verwendung

[Bearbeiten] BNC-Steckverbinder

T-Stücke & Abschlusswiderstände in BNC-Technik
T-Stücke & Abschlusswiderstände in BNC-Technik

Die wohl verbreitetste Koaxialstecker-Bauform ist der BNC-Steckverbinder (Bayonet Neill Concelman), benannt nach den Entwicklern Paul Neill (Bell Labs) und Carl Concelman (Firma Amphenol[1]). Sie wurden Ende der 1940er Jahre als eine verkleinerte Version der C-Steckverbinder, basierend auf einem Patent von Octavio Salati, entworfen.

Die Deutung der Abkürzung ist nicht unumstritten, häufig werden auch Bayonet Navy Connector, British Naval Connector, Bayonet Nut Connector, Bayonet Naur Connector oder Bayonet Norm Connector genannt.

BNC-Steckverbinder sind koaxiale Steckverbinder mit einem Bajonettverschluss für Hochfrequenzen bis etwa 1 GHz, teilweise bis 4 GHz, mit einem definierten Wellenwiderstand von entweder 50 oder 75 Ω. Die 50- und die 75-Ohm-Typen sind untereinander steckbar. Sie werden hauptsächlich in der Funk- und Videotechnik eingesetzt.

Als Sonderform wurden auch BNC-Steckverbinder mit einem Wellenwiderstand von 93 Ω für bestimmte Netzwerkanwendungen produziert.

Die BNC-Technik hat sich auch zur Übertragung von schwachen Gleichströmen, niederfrequenten Wechselströmen und Impulsen im Laborbetrieb durchgesetzt, weil der Außenleiter elektrische Störungen abschirmt. Der koaxiale Aufbau bietet so Schutz gegen externe elektrische Felder. Aus diesem Grund sind auch die Anschlüsse an Messgeräten wie Oszilloskop, Frequenzzähler und Funktionsgenerator in der Regel in BNC-Technik ausgeführt.

Der Einsatz von BNC in 10Base2-Rechnernetzwerken ist stark zurückgegangen, seitdem dort Twisted-Pair-Technik die Koaxialkabel verdrängt hat.

Speziell für Messplätze wurden in der DDR BNC-Steckerversionen entwickelt, die statt des Bajonetts einen Kragen aus federnden Kontaktzungen hatten, der aber auf normale BNC-Buchsen aufgeschoben werden konnte. Das erlaubte sehr zügige Messarbeiten, da die Stecker schnell umgesteckt werden konnten.

Da die Bajonettverbindung nicht zum Wellenwiderstand des Systems beitragen sollte, weil die Kontaktgabe des Aussenkontaktes an einer Hülse geschieht, die unter dem Bajonett liegt, wurden in der DDR ebenfalls BNC-Steckervarianten mit einer Bajonettverriegelung aus Kunststoff hergestellt. Das erlaubte eine teures Metall sparende Konstruktion und die Möglichkeit, durch farbige Kunststoffe die Stecker zu kennzeichnen.

[Bearbeiten] TNC-Steckverbinder

TNC-T-Stück und -Kupplung (weiblich)
TNC-T-Stück und -Kupplung (weiblich)

TNC-Steckverbinder (von Threaded Neill Concelman) sind koaxiale Steckverbinder für Hochfrequenz bis etwa 11 GHz mit einem definierten Wellenwiderstand von 50 Ω. Sie gleichen im Wesentlichen BNC-Steckverbindern, werden jedoch durch ein Gewinde (engl.: Thread) statt durch ein Bajonett miteinander verbunden.

Moderne TNC-Stecker sind wie der N-Stecker bis ca. 18 GHz ausgelegt.

Die Entwickler Paul Neill und Carl Concelman entwickelten diese Norm in den späten 1950er Jahren als Alternative zu BNC-Steckverbindern, deren elektrische Eigenschaften in Umgebungen mit starker Vibration, beispielsweise Fahrzeugen, durch den verhältnismäßig losen Bajonettverschluss zu wünschen übrig ließen.

Die Deutung der Abkürzung ist auch nicht unumstritten, TNC steht evtl. auch für Thread Navy Connector.

Der RP-TNC (von engl. reverse polarity threaded Neill Concelman) ist eine Sonderform des TNC-Steckverbinders. Äußerlich sind beide Steckverbinder gleich, nur die Innenteile sind vertauscht - RP-TNC-Stecker haben einen buchsenförmigen (weiblichen), die Buchsen einen steckerförmigen (männlichen) Zentralkontakt.

[Bearbeiten] Belling Lee („Antennenstecker“)

Belling-Lee-Steckverbinder (IEC 60169-2) wurden um 1922 von dem englischen Radiohersteller Belling-Lee Ltd. entwickelt und waren ursprünglich nur für Mittelwelle gedacht. Obwohl sie im Gegensatz zu moderneren Koaxsteckern nicht an die 75-Ohm-Impedanz des Antennenkabels angepasst sind, sind Belling-Lee-Verbinder auch heute noch an jedem Fernsehgerät und vielen Radios in Europa zum Anschluss von VHF- (UKW-) und UHF-Antennen sowie Kabelnetzen zu finden.

[Bearbeiten] C-Steckverbinder

C-Steckverbinder besitzen einen 2-nockigen Bajonett-Verschluss und sind für Frequenzen bis 11 GHz geeignet. Sie sind für große übertragbare Leistungen geeignet (400 Watt bei 1 GHz). Es gibt auch Ausführungen für Hochspannung (5 kV)[2].

[Bearbeiten] F-Steckverbinder

F-Steckverbinder
F-Steckverbinder

F-Steckverbinder (IEC 60169-24) sind koaxiale Steckverbinder mit Schraubverriegelung für Hochfrequenz bis etwa 5 GHz mit einem definierten Wellenwiderstand von 75 Ω.

F-Steckverbinder sind die heute in Nordamerika üblichen Fernsehantennenstecker und gehören auch heute zu den weltweit am meisten verwendeten Steckverbindern im Bereich des Satellitenfernsehen.

F-Stecker verwenden den massiven Innenleiter des Kabels direkt als Steckerstift, daher sind sie nur mit passenden Kabeltypen einsetzbar.

[Bearbeiten] SMBA (FAKRA)-Steckverbinder

SMBA(FAKRA)-Steckverbinder (von Fachkreis Automobil) DIN 72594-1 und USCAR-18 wurden im Jahre 2000 von der Firma Rosenberger Hochfrequenztechnik speziell für die Verwendung im Automobil-Bereich entwickelt. Der Einsatzbereich erstreckt sich hierbei von einfachen Antennensignalen (UKW mit oder ohne Fernspeisung, Fernsehsignalen) über Hochfrequenz-Signale für Keyless-entry-Systeme und Mobilfunk bis hin zu GPS und Telematik.

Das Besondere ist die sowohl farbliche als auch mechanische Kodierung der verschiedenen Varianten. Ferner lassen sich die Steckverbinder auch paarweise oder in Mehrfach-Kombinationen verarbeiten. Außerdem wurde Wert auf die speziellen Anforderungen im Automobilbereich gelegt (Temperaturbedingungen, Vibrationen, etc).

Die Steckverbinder sind durchweg mit 50 Ω Wellenwiderstand erhältlich und bis 6 GHz spezifiziert.

[Bearbeiten] K-Steckverbinder

K-Stecker oder 2,92-mm-Stecker sind eine Weiterentwicklung aus den SMA-Steckern. Statt Teflon (PTFE) wird als Dielektrikum Luft verwendet, was die Verwendung bis ca. 40 GHz gestattet.

[Bearbeiten] MCX/MMCX/SSMCX

MCX-Stecker einer GPS-Antenne
MCX-Stecker einer GPS-Antenne

MCX-Steckverbinder (Miniature CoaX), sind kleine (3,5 mm Durchmesser) koaxiale Steckverbinder die 1990 entwickelt wurden und in 50 Ω und 75 Ω erhältlich sind. Sie sind für Frequenzen bis 6 GHz ausgelegt. Ähnlich SMB verwenden sie eine Schnappverbindung und sind daher sehr einfach zu handhaben.

MMCX-Steckverbinder (Micro Miniature CoaX), sind sehr kleine (3 mm Durchmesser) koaxiale Steckverbinder nach DIN EN 122340. Sie sind bei PCMCIA-Karten weit verbreitet. Sie sind bis 6 GHz spezifiziert und für 50 Ω erhältlich.

SSMCX-Steckverbinder (Super Small MCX), sind ca. 30 % kleiner als MMCX. Sie sind für Frequenzen bis 10 GHz spezifiziert.

[Bearbeiten] UHF- bzw. PL-Steckverbinder

UHF- oder PL-Stecker.
UHF- oder PL-Stecker.

UHF-Steckverbinder, auch PL-Stecker genannt, findet man überwiegend in weniger anspruchsvollen Anwendungen im Kurzwellenbereich, beispielsweise bei Kurzwellen-Amateurfunkgeräten oder CB-Funk. Auch im Bereich des 4-m-BOS-Funks ist es (noch) der Standard-Anschluss, ebenso bei vielen älteren Betriebsfunkgeräten.

Der Stecker entwickelte sich als eine geschirmte Variante des 4-mm-Laborsteckers („Bananenstecker“). Darum wird er auch oft scherzhaft „Bananenstecker mit Überwurfmutter“ genannt. Minderwertige Varianten halten oft den Wellenwiderstand von 50 Ω nicht ein. Ansonsten ist der PL-Stecker (auch oft als SO249 bezeichnet) eine einfache, robuste Steckerkonstruktion, die sich gut handhaben lässt.

[Bearbeiten] N-Steckverbinder

N-Stecker (männlich)
N-Stecker (männlich)

N-Steckverbinder, benannt nach ihrem Entwickler Paul Neill, sind koaxiale Steckverbinder mit Schraubverriegelung für Hochfrequenz bis etwa 11 GHz mit einem definierten Wellenwiderstand von 50 Ω, seltener 75 Ω.

Paul Neill entwickelte diese Norm 1942 in den Bell Labs, da die bis dahin verwendeten UHF-Steckverbinder ungeeignet für höhere Frequenzen waren. Die ursprüngliche Spezifikation wurde im Lauf der Zeit mehrfach verbessert, seit 1972 gibt es auch eine bis 18 GHz spezifizierte Präzisionsausführung.

N-Steckverbinder gehören heute zu den am meisten verwendeten Steckverbindern in der Hochfrequenztechnik.

[Bearbeiten] 7/16-Steckverbinder

7/16-Steckverbinder wurden ursprünglich von der Firma Spinner entwickelt und sind benannt nach ihren metrischen Maßen von Innenleiter-Durchmesser (7 mm) und Dielektrikum-Durchmesser (16 mm). Sie erlauben höhere Übertragungsleistungen (bis 1800 Watt bei 1 GHz) als N-Steckverbinder.

Diese Steckverbinderform ist der Standard bei Mobilfunk-Basisstationen.

[Bearbeiten] SMA-Steckverbinder

SMA-Steckverbinder werden vornehmlich für Anwendungen in Frequenzbereichen von 1 GHz bis 18 / 26,5 GHz (je nach Ausführung) eingesetzt.
SMA steht für Sub-Miniature-A. Als Stecker werden die Ausführungen mit Überwurfmutter und als Buchsen diejenigen mit Außengewinde bezeichnet und zwar unabhängig von der Ausgestaltung des Innenleiters als Metallstift oder als Metallröhre (siehe unten). Die Paare, welche man miteinander verschrauben kann, sind SMA-Stecker mit SMA-Buchse.

Im Vergleich zu anderen Hochfrequenz-Steckverbindern sind SMA-Stecker recht klein. Sie haben dennoch aufgrund der Schraubverriegelung eine hohe mechanische Robustheit. Der Wellenwiderstand liegt üblicherweise bei 50 Ω.

Moderne SMA-Stecker sind bis 27 GHz und darüber hinaus spezifiziert, sie werden dann als „Super SMA“ bezeichnet.

3,5-mm-Stecker sind mechanisch kompatibel zu den SMA-Steckern, jedoch wird kein Dielektrikum (Teflon, Ultem, ...) verwendet, wie bei den 2,92-mm-, 2,40-mm-, 1,85-mm- und 1,0-mm-Steckern. Die 3,5-mm-Stecker sind bis 33 GHz einsetzbar und werden gerne bei Adaptern, z. B. 2,40 mm auf 3,5 mm statt 2,40 mm auf SMA verwendet.

SSMA steht für Small SMA, wurde vornehmlich für den Weltraumeinsatz konzipiert und erlaubt eine Verwendung bis 40 GHz.

[Bearbeiten] RP-SMA-Steckverbinder

RP-SMA-Stecker mit Innenleiter als Metallröhrchen
RP-SMA-Stecker mit Innenleiter als Metallröhrchen

Nicht zu verwechseln ist der SMA-Steckverbinder mit seiner proprietären Variante dem sogenannten Reverse-Polarity-SMA-Steckverbinder - auch oft als RP-SMA bzw. Reverse-SMA (R-SMA) bezeichnet -, was umgekehrte Polarität bedeutet. Die Ausführungen sind äußerlich gleich, d. h. es gibt Stecker (mit Überwurfmutter) und Buchsen mit Außengewinde. Die Ausführung des Innenleiters ist in den Steckverbindern jedoch umgedreht (revers polarisiert) ausgeführt. Der RP-SMA-Stecker hat eine (weibliche) innere Metallröhre, der Standard-SMA-Stecker hat einen (männlichen) inneren Metallstift. Reverse-SMA wird oft für Antennenanschlüsse an WLAN-Geräten benutzt.

Für Lichtleitkabel gibt es eine abgeleitete Form mit der Bezeichnung FSMA-Steckverbinder.

[Bearbeiten] SMB/SMS/SMC/SMP

SMB T-Stück (männlich) und Abschlusswiderstand 50 Ohm (weiblich)
SMB T-Stück (männlich) und Abschlusswiderstand 50 Ohm (weiblich)
SMC T-Stück (männlich) und Kupplung (weiblich)
SMC T-Stück (männlich) und Kupplung (weiblich)

SMB steht für Sub-Miniature-B. SMB-Steckverbinder werden für Frequenzen bis 4 GHz eingesetzt. Im Gegensatz zu SMC-Steckverbindern werden die Verbinder nur gesteckt und nicht geschraubt. Sie werden hauptsächlich für geräteinterne Verbindungen verwendet.

SMS steht vermutlich für Sub-Miniature-Sliding. Bei manchen Herstellern heißt diese Steckernorm auch SMG.
SMS-Steckverbinder werden im Frequenzbereich bis hin zu 4 GHz eingesetzt. Im Gegensatz zu SMB-Steckverbindern haben die SMS-Verbinder keine Schnapp-Verriegelung. Sie werden deshalb hauptsächlich an Einschub-Baugruppen angewendet, da sie relativ geringe Steckkräfte aufweisen. Von den Dimensionen der Koaxial-Schnittstellen sind sie wie die SMB- und SMC-Steckverbinder aufgebaut, z. B. Durchmesser des Innenleiter-Steckerstiftes 0,48…0,53 mm, Außendurchmesser des Steckers 3,66…3,71 mm. SMS- und SMB-Verbinder sind untereinander steckbar.

SMC-Steckverbinder sind dem SMA-Verbinder ähnlich, aber die Schlüsselweite der Schraubverriegelung ist kleiner (Verschraubung hat Schlüsselweite 6,35 statt 8 mm beim SMA-Stecker). Die elektrischen Daten und Abmessungen der Steck-Schnittstelle wie beim SMB- und SMS-Steckverbinder.

SMP-Steckverbinder sind die „Norm“ für Hochfrequenz-Steckverbinder für einen Frequenzbereich DC bis 40 GHz.
Die Verbindung wird gesteckt. Die Verbinder sind mechanisch sehr kompakt (Stecker-Schnittstelle: Innenleiterstift nominal 0,38 mm Durchmesser, Außendurchmesser an der Schnittstelle etwa 3,2 mm).
Die Stecker gibt es in drei Versionen mit unterschiedlichen Steckkräften: Schnappversionen „full detent“ und „limited detent“ und Gleitversion „smooth bore“. Die Gleitvariante ist ähnlich wie SMS-Steckverbinder für Einschubmodule oder aufeinander gesteckte Leiterplatten vorgesehen. Üblicherweise haben dabei die zu verbindenden Module nur Stecker (male) und werden durch in darin eingesteckte Buchse-Buchse-Adapterstücke (female-female) erst untereinander kuppelbar. Die Besonderheit ist, dass durch diese Konstruktion aus drei Teilen nicht nur ein axialer, sondern insbesondere ein kleiner radialer Toleranzausgleich ermöglicht wird, was bei vielpoligen Verbindungen unbedingt erforderlich ist.

[Bearbeiten] WICLIC-Steckverbinder

WICLIC-Dose und -Stecker
WICLIC-Dose und -Stecker

WICLIC-Steckverbinder stammen von der Firma Wilhelm Sihn Jr. GmbH & Co. KG (Wisi). Die Stecker werden unter anderem in Automobil-Telefoninstallationen (Antennenanschlüsse) sowie für den Anschluss von Internet-Kabelmodems verwendet, wobei dort der Anschluss oft Breitband- oder Multimedia-Dose genannt wird.

[Bearbeiten] QN/QLF/QMA

QN-Steckverbinder wurden von den Firmen Radiall und Huber+Suhner entwickelt. Sie basieren auf den Steckern der N-Serie, werden aber nur gesteckt statt geschraubt. Sie sind im gesteckten Zustand um 360° drehbar. Der Stecker ist geeignet bis 11 GHz und entspricht dem QLF-(C)-Standard (Quick Lock Formula). Sie werden unter anderem in Mobilfunk-Basisstationen (z. B. Nortel S18000) verwendet, weil sie wesentlich schneller montiert werden können.

QMA-Steckverbinder sind die kleinere Variante des QN-Steckverbinders. Sie basieren auf der SMA-Schnittstelle und sind bis 18 GHz verwendbar.

[Bearbeiten] V-Steckverbinder

V-Stecker oder auch 1,85-mm-Stecker sind für Frequenzen bis ca. 67 GHz ausgelegt.

2,40-mm-Stecker sind mechanisch kompatibel zu den V-Steckern. Sie sind eine Weiterentwicklung der 2,92-mm- bzw. K-Stecker und für Frequenzen bis ca. 50 GHz ausgelegt.

[Bearbeiten] Übersicht

Der Aufbau des gewählten Steckverbinders, insbesondere Qualität und Durchmesser des Koaxialrohres, bestimmt den nutzbaren Betriebsfrequenzbereich (Grenzfrequenz) für die Anwendung.

Durchmesser Bezeichnung Grenzfrequenz
7 mm APC7, N 18 GHz
3,5 mm (SMA) 34 GHz
2,92 mm K 40 GHz
2,4 mm 50 GHz
1,85 mm V 67 GHz
1,0 mm W 110 GHz

[Bearbeiten] Weblinks

Copyright © 2005-2010 Hardware-Aktuell. Alle Rechte vorbehalten.