Ein Plasmabildschirm ist ein Farb-Flachbildschirm, der das verschiedenfarbige Licht mit Hilfe von Leuchtstoffen erzeugt, die durch von Gasentladungen erzeugtes Plasma angeregt werden.
Plasmabildschirme werden hauptsächlich als große (ab 37") Fernseh-Anzeigegeräte eingesetzt. Hier konkurrieren sie derzeit vor allem mit Flüssigkristallbildschirmen ("LCD-TV"). Kathodenstrahlröhren wurden dagegen nie in vergleichbaren Größen eingesetzt.
Inhaltsverzeichnis |
Plasma (von griechisch „Gebilde“) ist ionisiertes Gas, das neben neutralen Teilchen auch freie Ionen, angeregte Atome und Elektronen enthält. Plasmen senden aufgrund spontaner Emission angeregter Atome sichtbares Licht und Ultraviolettstrahlung aus.
Beim Plasmabildschirm macht man sich die Emission von UV-Strahlen durch ein Niederdruckplasma zunutze. Die Funktionsweise ähnelt der einer Leuchtstofflampe. Leuchtstoffe werden hier durch Ultraviolettstrahlung des Quecksilberdampf-Plasmas zur Emission von sichtbarem Licht angeregt. Bei Plasmadisplays verwendet man dagegen Edelgase.
Der Aufbau von Plasmabildschirmen ist relativ einfach. Zwischen zwei Glasplatten befinden sich sehr viele kleine Kammern. Jeweils drei Kammern ergeben einen Bildpunkt, ein sogenanntes Pixel.
Jede der drei Kammern leuchtet in einer der drei Grundfarben Rot, Grün und Blau. Die Farben werden durch additive Farbmischung erzeugt, das heißt durch Mischung der drei Grundfarben (z. B. Gelb durch Mischung aus grünem und rotem Licht, was beim Plasmabildschirm durch das Leuchten der entsprechenden Kammern bewerkstelligt wird). Jede Kammer ist mit einem Edelgas-Gemisch aus Neon und Xenon gefüllt, wobei der Druck wesentlich niedriger ist als der normale Luftdruck, es ist also ein „Beinahe-Vakuum“. Manche Hersteller verändern dieses Gemisch, indem sie Helium beimengen. Der Anteil von Xenon beträgt ca. 3-5%.
Zur Erzeugung eines Bildes wird jede Kammer individuell mit einem zugehörigen Transistor „gezündet“, d. h. das Gas wird kurzzeitig ionisiert, es wird zum Plasma. Die Grundfarben in den Kammern werden durch verschiedene Leuchtstoffe (Phosphore) erzeugt, sobald auf die Leuchtstoffe die vom Plasma emittierte Ultraviolettstrahlung (Vakuum-Ultravioletter Bereich, 140 bis 190 nm) trifft. Das Ultraviolett selbst ist nicht sichtbar. Die Leuchtstoffe wandeln die VUV-Strahlung in sichtbares Licht mit der je nach Leuchtstoff unterschiedlichen Farbe um.
Jede Farbe wird von einem anderen Leuchtstoff erzeugt: BaMgAl10O17:Eu2+ (blau), Zn2SiO4:Mn2+ (grün) und (Y,Gd)BO3:Eu3+ (rot; kann auch von Y(V,P)O4:Eu3+ oder Y2O2S:Eu3+ erzeugt werden). Um nicht nur die diskreten Zustände „an“ (gezündet) und „aus“, sondern auch dazwischen liegende Helligkeitsstufen zu erzeugen, bedient man sich eines Tricks: Man zündet die Kammern in kurzen Abständen (Intervallen) und variiert die Dauer einer Zündung, um die Helligkeit zu variieren. Je länger eine Kammer gezündet ist, umso heller leuchtet sie.
Das Gas zwischen den beiden Glasplatten ist stark verdünnt, dadurch sind niedrige Plasmatemperaturen möglich. Zur Zündung sind Spannungen von einigen hundert Volt erforderlich.
Auf der unteren dielektrischen Schicht (Glasplatte, also eine Isolationsschicht) sitzt ein Adress-Elektrodenstreifen, der zusammen mit den oberen Elektroden die Ansteuerung jeder Kammer ermöglicht (jede Kammer sitzt am Kreuzungspunkt einer Adress- und einer oberen Elektrode). In der Kammer selbst befinden sich der Leuchtstoff (aufgetragen auf die dielektrische Schicht und die Barrieren) und das Gasgemisch bzw. das Plasma. Eine Schutzschicht hat die Aufgabe, die obere dielektrische Schicht und die dort befindlichen transparenten Elektroden zu schützen. Die beiden Elektroden können durch die dielektrische Schicht hindurch das elektrische Feld in der Kammer beeinflussen und steuern somit die Helligkeit bzw. die abgestrahlte Farbe.
Plasmabildschirme werden mittels Sandwichbauweise gefertigt.
Die Adress-Elektroden sind vertikal und die Line-Elektroden horizontal angeordnet. Durch das so entstehende Gitter ist eine Steuerung der einzelnen Kammern mit dem Multiplexverfahren möglich. Während man bei nur einer Elektrodenschicht jeweils nur eine Reihe ansteuern könnte, ist es mit einem Gitter (jeder Kreuzungspunkt entspricht einer Kammer) möglich, jede Kammer separat zu steuern.
Der blaue Leuchtstoff hat eine geringere Stabilität unter VUV-Bestrahlung; die grüne Farbwiedergabe leidet hingegen unter der vom Plasma ebenfalls erzeugten Strahlung im orangeroten Spektralbereich. Um eine ausreichende Farbsättigung zu erreichen, muss der Leuchtstoff deutlich höher im Farbdiagramm liegen als z. B. der bei Röhrenbildschirmen (CRTs) eingesetzte Leuchtstoff.
Der erste funktionsfähige Plasmabildschirm wurde im Jahre 1964 von Donald L. Bitzer und H. Gene Slottow für das Großrechnersystem PLATO IV der University of Illinois entwickelt. Gegenüber Röhrenbildschirmen wiesen Plasmaschirme den Vorteil auf, dass sie direkt digital angesteuert werden konnten; zudem waren sie recht langlebig und platzsparend. Für einige Jahre wurden Plasmadisplays daher auf dem Großrechner-Sektor relativ häufig eingesetzt.
Der technische Fortschritt und verringerte Herstellungskosten verhalfen in den 1970er Jahren jedoch dem Röhrenmonitor als Computer-Anzeigeeinheit zum Durchbruch. Der Einsatz von Plasmabildschirmen beschränkte sich in der Folgezeit auf wenige Spezialzwecke.
Als zu Beginn der 1980er Jahre die ersten Laptops entwickelt wurden, griffen einige frühe Hersteller, darunter GRiD, Toshiba und Chicony, zur Ausstattung ihrer tragbaren Rechner auf die Plasmaschirm-Technik zurück, da sie sehr flache und kompakte Gehäuseformen bei angemessen großer Bilddiagonale ermöglichte und unter ergonomischen Gesichtspunkten (Blickwinkel, Kontrast) den ersten Flüssigkristallbildschirmen weit überlegen war. Der hohe Stromverbrauch der Plasmadisplays machte allerdings einen netzunabhängigen Betrieb weitgehend unmöglich; zudem blieb ihr Einsatz aus Kostengründen auf Geräte der höchsten Preiskategorie beschränkt. Da hochauflösende Farb-Plasmaschirme technisch nicht zu realisieren waren und bei der Entwicklung besserer LCDs große Fortschritte gelangen, verschwanden die Plasma-Laptops um 1990 wieder vom Markt.
Etwa zur gleichen Zeit begannen mehrere Unterhaltungselektronik-Konzerne mit der Entwicklung von Farb-Plasmabildschirmen zum Einsatz in Fernsehgeräten. Das erste Farb-Plasmadisplay mit einer Bilddiagonale von 21 Zoll wurde 1992 von Fujitsu vorgestellt; bis zur Entwicklung marktreifer Displays vergingen allerdings noch mehrere Jahre.
Das erste Fernsehgerät mit Plasmabildschirm brachte Pioneer im Jahre 1997 auf den Markt. Zum kommerziellen Durchbruch für die Technik trugen die Olympischen Winterspiele von 1998 bei: Ein japanischer Fernsehsender benötigte damals große Flachbildschirme für das hauseigene HDTV-Angebot.
Nach Berichten von Funkamateuren senden Plasmabildschirme einige breitbandige elektromagnetische Strahlungen aus, die den Mittel- und Kurzwellen-Bereich im näheren Umkreis stören.[1] Selbst sind sie im Gegensatz zu Röhrengeräten unempfindlich gegenüber Magnetfeldern. Dadurch lassen sich auch größere Lautsprechersysteme unmittelbar neben dem Bildschirm aufbauen, ohne mit Bildstörungen zu verursachen.
Der Stromverbrauch eines Plasmabildschirms hängt - anders als bei Röhren- und LCD-Fernsehern - sehr stark von dem dargestellten Bild ab. Ein dunkles Motiv verbraucht so wesentlich weniger Strom als ein helles.
Heute spielen Plasmabildschirme gegenüber LCD-TVs am Markt nur eine untergeordnete Rolle, von den 4,4 Millionen 2007 verkauften Flachbildschirmen waren 3,9 Millionen LCDs.[2] Zudem werden Plasmabildschirme erst ab einer Größe von 37" (94 cm) angeboten. Anfang 2008 hat der TV-Hersteller Pioneer bekanntgegeben, zukünftig auch LCD-TVs anzubieten und seine Plasma-Panels nicht mehr selbst herzustellen.[3]
Die Elektronikmärkte bewerben vor allem vier Eigenschaften der Geräte: Die Größe, den Preis, die maximale Auflösung (HD ready oder Full HD) und den Kontrast. Der höhere Kontrast galt lange Zeit als Hauptvorteil von Plasmabildschirmen, als diese einen Kontrast von 15.000:1 gegenüber maximal 1000:1 bei einem LCD erreichten. Heute werden auch für LCDs teilweise über 15.000:1 angegeben; für Plasmabildschirme gar 500.000:1 und mehr.
Andersherum ist die Auflösung eine Stärke der LCD-TVs. HD ready haben diese Geräte alle; Full HD ist ab 42" selbstverständlich; bei 37" inzwischen ebenfalls die Mehrheit. Inzwischen werden auch erste 32"-Full HD-Geräte angeboten. Demgegenüber verfügt erst die neueste Generation der 42"-Plasmabildschirme über Full HD, HD ready ist aber auch hier heute Standard.
Beim Preis spielt bei einem Plasmabildschirm vor allem die Auflösung; bei einem LCD vor allem die Größe eine Rolle, so dass große LCDs sehr teuer werden, bei Größen bis 42" und Full HD aber günstiger als Plasmabildschirme sind.
Bevor man eine Alternative für ein Plasmadisplay vorschlagen kann, muss man den Verwendungszweck kennen.
Bei Großbildschirmen ist eine Alternative die Projektion (Laser oder Normallicht), wobei man mit geringerem Kontrast rechnen muss. Teilweise werden auch LED-Bildschirme eingesetzt, bei denen jeder Bildpunkt eine eigenständige LED ist. Der große Vorteil von LED-Displays ist, dass sich die Größe ohne großen technischen Aufwand praktisch beliebig vergrößern lässt. Z.B. können Videowände nur entweder als LED-Bildschirme oder mehrere zusammengeschaltete herkömmliche Bildschirme realisiert werden.
Als „normaler“ Fernseher sind vor allem Flüssigkristallbildschirme (engl. Liquid Crystal Display, „LCD-TV“) eine gängige Alternative. Herkömmlichen CRT-Bildschirme (engl. Cathode Ray Tube - Kathodenstrahlröhre) können hingegen nicht in derart großen Formaten hergestellt werden, da zum einen Konvergenzfehler (Farbverschiebungen) und Linearitätsfehler (Verzerrungen) zunehmend schwerer zu beherrschen sind und zum anderen die zum Erreichen der mechanischen Stabilität erforderliche Bildschirmmasse (Glasdicke) stark zunimmt.
Bei PALC (plasma-adressed liquid crystal) werden Plasmaschalter statt wie beim TFT-Bildschirm Transistoren zur Ansteuerung eines LCD verwendet, es ist daher kein Plasmabildschirm im eigentlichen Sinne.