Als Molded Interconnect Devices (MID), zu deutsch: Spritzgegossene Schaltungsträger werden elektronische Bauteile bezeichnet, bei denen metallische Leiterbahnen auf spritzgegossene Kunststoffträger aufgetragen werden. Dabei kommen unterschiedliche Techniken zum Einsatz.
Wesentliche Einsatzgebiete für die MID Technologie sind der Automobilbau, die Industrieautomatisierung, die Medizintechnik, die Hausgeräteindustrie, die Telekommunikationstechnik, die Mess- und Analysetechnik sowie die Luft- und Raumfahrt. Das Marktvolumen der MID-Technologie unterliegt einem stetigen Wachstum (Marktvolumen 2004: 10,7 Mio. €; 2005: 14,1 Mio €; prognostiziertes Volumen für 2008: 56,2 Mio. €).
Inhaltsverzeichnis |
Die Vorteile der MID-Technologie liegen sowohl in der verbesserten Gestaltungsfreiheit und Umweltverträglichkeit, als auch in einem Rationalisierungspotenzial bezüglich des Herstellungsprozesses des Endproduktes.
Gestaltungsfreiheit
Die verbesserte Gestaltungsfreiheit und die Integration von elektrischen und mechanischen Funktionen in ein Spritzgussteil kann zu einer Miniaturisierung der Baugruppe führen. Außerdem können neue Funktionen realisiert und beliebige Formen gestaltet werden.
Rationalisierung
Die Rationalisierungspotentiale liegen in der Reduzierung der Teileanzahl (Materialeinsparung) und der Verkürzung der Prozessketten. Des Weiteren können durch die Reduzierung der Montageschritte die Zuverlässigkeit erhöht werden.
Umweltverträglichkeit
Durch den Einsatz der MID-Technologie kann der Materialmix einer Kombination aus Leiterplatte und Mechanikkomponente (konventionelle Lösung), der meist aus vielen Werkstoffen besteht, durch ein metallisiertes Kunststoffteil (MID) ersetzt werden. MIDs werden aus rezyklierbaren Thermoplasten hergestellt und sind unkritischer bei der Entsorgung als konventionelle Leiterplatten. Das Basismaterial für eine Leiterplatte ist dagegen im Allgemeinen ein schwer entsorgbarer und nicht rezyklierbarer Duroplast.
MIDs können auf verschiedenste Art produziert werden. Die wichtigsten Verfahren zur Aufbringung der Leiterbahnen sowie von sendenden bzw. schirmenden Flächen sind der Zweikomponentenspritzguss, das Heißprägen, das Maskenbelichtungsverfahren, die Laserstrukturierung und das Folienhinterspritzen. Grundsätzlich wird zwischen subtraktiv strukturierenden und additiv metallisierenden Verfahren unterschieden.
Eine Möglichkeit besteht darin, den Schaltungsträger im Zweikomponentenspritzguss herzustellen. Ein Kunststoff bildet den Grundkörper, ein weiterer ist metallisierbar und bildet das Leiterbahnlayout ab. Vom Zweikomponentenspritzguss existiert eine Vielzahl von Varianten. Am gebräuchlichsten sind das PCK (Printed Circuit Board Kollmorgen)- und das SKW (Sankyo Kasei Wiring Board)-Verfahren.
PCK-Verfahren: Für den ersten Schuss wird ein metallisierbarer, nicht elektrisch leitender Kunststoff verwendet. Dabei wird die Leiterbahngeometrie des MID erhaben abgebildet. Im zweiten Schuss werden die Bereiche zwischen den Leiterbahnen mit einem nicht metallisierbaren Kunststoff aufgefüllt.
SKW-Verfahren: Im ersten Schuss wird die Leiterbahnstruktur als Vertiefung aus der nicht-metallisierbaren Komponente gespritzt. Im zweiten Schuss werden diese Bereiche mit der metallisierbaren Komponente aufgefüllt.
Nach dem zweiten Schuss hat das MID-Basisteil seine endgültige Form und es werden in den nachfolgenden Schritten die entsprechenden Metalle auf den metallisierbaren Kunststoff aufgebracht. Hierbei wird zunächst die Oberfläche des metallisierbaren Kunststoffs aktiviert. Auf diese Oberfläche wird galvanisch Kupfer bis zur gewünschten Stärke aufgebracht.
Das Heißprägeverfahren ist ein volladditives Herstellungsverfahren, das mit sehr wenigen Arbeitsschritten auskommt. Das Spritzgussteil, das die geometrische Endform bereits besitzt, wird in eine Prägepresse eingelegt. Eine oberflächenmodifizierte Metallfolie wird mit dem Prägewerkzeug gleichzeitig gestanzt und unter Verwendung von Druck und Wärme mit dem Spritzling verbunden. Die Prägefolien sind mit einer Klebstoffschicht versehen oder haben eine Schwarzoxid-Beschichtung, die für die Haftung sorgt.
Das Heißprägen ist durch folgende Punkte charakterisiert:
Beim Laser MID Verfahren unterscheidet man die Laser-Direkt-Strukturierung (additiv) und die subtraktive Laserstrukturierung:
Im ersten Schritt erfolgt eine Oberflächenaktivierung und -strukturierung mittels Laser. Auf die strukturierten Flächen wird anschließend Kupfer aufgetragen.
Bei der subtraktiven Laserstrukturierung wird die gesamte Bauteiloberfläche metallisiert und anschließend Ätzresist aufgetragen. Mit Hilfe des Lasers wird der Ätzresist strukturiert und die freigelegte Kupferschicht weggeätzt.
Nach dem Spritzgießen des Kunststoffteils und der Oberflächenaktivierung erfolgt zunächst ganzflächig eine chemische Grundmetallisierung mit einer dünnen Kupferschicht. Darauf wird ein Photoresist aufgebracht.
Das Belichten erfolgt mit Hilfe einer dreidimensionalen Photomaske und mit UV-Licht. Der belichtete Photoresist wird entwickelt und im nächsten Schritt wird die Leiterbahngeometrie zur gewünschten Schichtdicke elektrolytisch verstärkt. Nach Aufbringen einer Ätzmaske und Entfernen des Photoresists wird das anfangs aufgebrachte und jetzt nicht mehr benötigte Kupfer weggeätzt.
Das Maskenbelichtungsverfahren ist durch folgende Punkte charakterisiert:
Beim Folienhinterspritzen wird eine separat hergestellte, ein- oder mehrlagige flexible Leiterbildfolie in ein Spritzgusswerkzeug eingelegt und mit geeigneten Kunststoffen hinterspritzt.
Das Folienhintersprizen ist durch folgende Punkte charakterisiert:
Hierbei wird ein kontinuierlich zugeführter Kupferdraht aufgeschmolzen und mit Druckluft auf die Trägermaterialen aufgespritzt. Wesentliche Vorteile sind die chemie- und maskenfreie Herstellung sowie die hohe Flexibilität; es lassen sich durch softwaregesteuerte Roboter Losgrößen von 1 kostengünstig realisieren. Das Verfahren wird von der Leoni-AG entwickelt und soll in wenigen Jahren die manuelle Kabelbaumfertigung ersetzen.
Die Forschungsvereingung Räumliche Elektronische Baugruppen 3-D MID e.V. ist mit 63 Mitgliedsfirmen und 15 Forschungsinstituten der größte industrielle Forschungsverbund im Bereich der 3D-MID-Technologie weltweit.
Die Forschungsvereinigung wurde 1993 in Erlangen gegründet. Ziel der Forschungsvereinigung ist die Förderung und Weiterentwicklung der MID-Technologie. Dazu werden Projekte zur Gemeinschaftsforschung durchgeführt, der Erfahrungsaustausch unter den Mitgliedern gefördert und durch geeignete Öffentlichkeitsarbeit die Umsetzung der neuen technischen Möglichkeiten angeregt. Ein besonderes Anliegen ist die Unterstützung kleiner und mittelständischer Unternehmen.