Die Curta (auch Kurwa genannt) ist eine mechanische Rechenmaschine in Form eines Zylinders mit einer Kurbel an der Oberseite. Das Funktionsprinzip ist das der doppelten Staffelwalze. Sie ist noch immer die kleinste serienmäßig hergestellte mechanische Vier-Spezies-Rechenmaschine der Welt und wird dies aller Voraussicht nach auch bleiben.
Inhaltsverzeichnis |
Die Curta konnte in der Ausführung I bis zu elfstellige, später fünfzehnstellige Ergebnisse liefern. Sie besteht im wesentlichen aus einer zentralen Welle, die die Funktion der Staffelwalze übernimmt und an deren oberen Ende die Kurbel angebracht ist, sowie aus dem Gehäuse, das die übrigen Elemente trägt.
Die Staffelwalze der Curta besteht aus einem Blechpaket, wobei die einzelnen Bleche unterschiedliche Zähnezahlen haben und auf diese Weise die Ziffern codieren. Jedes Blech ist doppelt vorhanden, um durch Verschieben der Walze subtrahieren zu können, was durch Addition des Zehnerkomplements erfolgt. Jede Ziffer wird dabei auf 9, die Einerziffer auf 10 ergänzt.
Beispiel für dreistellige Rechnung: um von 451 173 zu subtrahieren, addiert man das Komplement 827 und erhält 1278. Nach Streichung der führenden 1 erhält man das korrekte Ergebnis.
An der Seitenfläche des Gehäuses befindet sich das Einstellwerk mit acht bzw. elf Einstellgriffen. Die Griffe ragen nach innen und verschieben dort kleine Zahnräder, die auf einer zweiten, weiter innen liegenden Welle lose gelagert sind. Wenn die Staffelwalze gedreht wird, verdrehen die Zähne die Wellen dieser Räder je nach Stellung des Griffes und der Kurbel unterschiedlich weit. Im drehbaren Oberteil des Gehäuses, dem sog. „Rundwagen“ (oder kurz „Wagen“), befinden sich die beiden Ergebniswerke, nämlich das 11- bzw. 15-stellige Resultatzählwerk (schwarz hinterlegt) und das 6- bzw. 8-stellige Umdrehungszählwerk (weiß hinterlegt.) Die Übertragung auf diese Zählwerke erfolgt durch kleine Kronräder am oberen Ende der inneren Wellen. Weitere Zahnräder und Hebelchen sorgen für den korrekten Zehnerübertrag von Stelle zu Stelle.
Der Rundwagen ist federnd gelagert und lässt sich nach leichtem Anheben versetzen, was für das stellenrichtige Rechnen erforderlich ist. In der angehobenen Position lässt sich auch der Löscherhebel bedienen, der mit weiteren Zahnrädern alle überstrichenen Räder der Ergebniswerke auf Null setzt.
Die Curta beherrscht die vier Grundrechenarten, wobei alle Rechnungen auf Additionen und Subtraktionen zurückgeführt werden. Für die Bedienung muss man nur im Kopf behalten, dass jede Drehung der Kurbel eine stellenrichtige Addition des Einstellwerks (EW) ins Resultatwerk (RW) zur Folge hat. Solange man das EW nicht verstellt, gilt daher nach beliebig vielen Drehungen und Versetzungen des Wagens stets RW = EW * UW.
Die Maschine lässt sich bequem in einer Hand halten und weitgehend auch einhändig bedienen. Man kann alle Manipulationen mit der rechten Hand ausführen (wenn man die Maschine in der linken hält), nach einiger Übung wird man aber das Versetzen des Oberteils (des „Rundwagens“) und ggfs. auch die Bedienung des EW mit der linken Hand bewerkstelligen.
Im einfachsten Fall der Addition wird einer der beiden Summanden über die Stellschieber auf der Zylinderaußenseite eingegeben (die Ziffern sind dabei in kleinen Fensterchen ablesbar) und mittels einer Kurbelumdrehung ins Ergebniswerk addiert. Die Kurbelumdrehungen werden dabei im Umdrehungszählwerk vorzeichenrichtig nachgehalten. Dann stellt man den zweiten Summanden ein, führt eine weitere Kurbelumdrehung durch und liest das Ergebnis ab.
Durch wiederholte Rechenvorgänge mit versetzten Stellen (durch Anheben und Versetzen des Rundwagens) lassen sich Multiplikationen ganz analog zum schriftlichen Multiplizieren ausführen, man berechnet also eine Stelle nach der anderen. Zieht man die Kurbel ein kleines Stück in Achsrichtung heraus, lassen sich Subtraktionen und – wiederum stellenweise – Divisionen rechnen. Eine Sperrklinke verhindert ein Rückwärtsdrehen der Kurbel, und ein Löschhebel setzt das Ergebnis- oder Umdrehungszählwerk (oder beide) zurück. Kurbel, Löschhebel und Rundwagen sind dabei so gegeneinander gesperrt, dass sich immer nur eines der Bedienelemente außerhalb seiner Grundstellung befinden kann.
Die „Grundstellung“ der Kurbel ist dabei deutlich spürbar. Falls sich die Kurbel in dieser Stellung befindet, beide Zählwerke gelöscht sind, die Einstellgriffe auf Null stehen und sich der Umschalthebel des Umdrehungszählwerkes oben befindet, wird die Maschine als „rechenklar“ bezeichnet.
Die Curta war zu ihrer Zeit in allen Bereichen im Einsatz, in denen man heute Taschenrechner findet, im Ingenieurwesen wurde aber häufig (für die Punktrechnung) der Rechenschieber vorgezogen, der zwar ein ungenaueres Ergebnis liefert, aber für diese Anwendung deutlich schnelleres Rechnen ermöglicht.
Aufgabe: 314,55 + 2135,30 − 875,92
Das Komma wird, falls gewünscht, mit den Kommaknöpfen markiert, hat aber auf die eigentliche Rechnung keinen Einfluss.
Aufgabe: 4165,78 . 292,3
Wiederum werden Kommas zunächst nicht beachtet. Wenn man die Wahl hat, stellt man vorteilhaft den Faktor mit mehr Ziffern im Einstellwerk ein.
Mit dem gleichen Ergebnis lässt sich die Rechnung „von oben“ – also an Wagenposition 4 beginnend – oder sogar in beliebiger Reihenfolge durchführen. Das Vorgehen ist völlig analog zur schriftlichen Multiplikation, die man ebenfalls stellenweise vornimmt.
Für eine weitere Multiplikation muss das Ergebnis normalerweise wieder ins Einstellwerk übertragen werden, was nur manuell geht. Für kurze Zahlen gibt es aber Tricks, zwei Multiplikationen „nebeneinander“ auszuführen (s. Weblink.)
Hierfür gibt es zwei Verfahren: das „aufbauende“ und das „abbauende“ Verfahren. Beiden Verfahren ist gemeinsam, dass sich der Divisor (Teiler) im Einstellwerk befindet und das Divisionsergebnis im Umdrehungszählwerk abgelesen wird, was die Stellenzahl auf 6 bzw. 8 (bei der Curta II) begrenzt. Beim aufbauenden Verfahren beginnt man mit Null im Resultatzählwerk und baut hier den Dividenden auf, beim abbauenden Verfahren befindet sich der Dividend bereits im Resultatwerk (mit Vorteil möglichst weit links, was ggfs. zuvor zu berücksichtigen ist), und man findet das Ergebnis durch „Herauskurbeln“.
Im Regelfall geht eine Division nicht auf; man versucht dann, einen möglichst guten Näherungswert zu finden, und rundet sinnvoll.
A. Aufbauendes Verfahren
Aufgabe: 310 / 4,68 = ?
B. Abbauendes Verfahren
Analog wie oben, abgesehen davon, dass man beim Ausgangswert anfängt und auf Null kurbelt. Dazu ist der Umsteuerhebel in die „entgegengesetzt zählen“-Position zu bringen.
Aufgabe: 2040,3 / 17,26 = ?
20403000000 befindet sich im Resultatwerk, das Umdrehungszählwerk ist gelöscht.
Diese häufig vorkommende Aufgabe kann bei genügend „kurzen“ Zahlen oder ausreichender Stellenzahl verkürzt gerechnet werden, indem man die Zahlen im Einstellregister an die Enden stellt. EW und RW werden dann gedanklich so weit rechts wie möglich geteilt.
Aufgabe: 1980 * 395 / 144
Effektiv hat man dabei im linken Teil des EW und RW nach der aufbauenden Methode dividiert und im rechten Teil den Quotienten im gleichen Arbeitsgang mit dem zweiten Faktor, hier 395, multipliziert. Falls die Division nicht aufgeht oder die Werte zu groß sind, laufen die Zahlen ineinander und man muss die Rechnungen einzeln ausführen.
Die Bestimmung der Quadratwurzel ist mit einem iterativen Näherungsverfahren (s.u.) ebenfalls kein Problem. Voraussetzung ist, dass man einen ungefähren Näherungswert kennt, entweder aus einer Tabelle, durch einen Blick auf den Rechenschieber oder durch mehr oder minder mutiges Raten bzw. Schätzen.
Aufgabe: bestimme
Ein kurzer Blick auf den Rechenschieber (linke Hälfte der Skala A) verrät uns eine Näherung 28,4. Diesen Wert quadrieren wir zunächst.
Mathematischer Hintergrund: Für den Näherungswert N, den unbekannten Fehler E und die ebenfalls unbekannte Wurzel R gilt R = N + E und daher R2 = N2 + 2NE + E2. Vernachlässigt man den quadratischen Term in E, erkennt man, dass man durch Addition oder Subtraktion von 2N zu einer Abschätzung für E und damit einem besseren Wert für N kommt. Im Regelfall kann man die Zahl der exakten Stellen in jedem Schritt annähernd verdoppeln. Das Verfahren lässt sich ebenfalls in einer subtraktiven Variante anwenden, analog der Division nach dem abbauenden Verfahren. Schließlich lässt sich das Verfahren auch für dritte Wurzeln anwenden, indem man R3 = N3 + 3N2E + T.H.O. ausnutzt, den Schätzwert kubiert und dann das dreifache seines Quadrates als Korrekturwert verwendet.
Die Curta ist ein raffiniert konstruiertes feinmechanisches Wunderwerk. Ihre Besonderheit ist, dass sie im Gegensatz zu den sonst zur damaligen Zeit üblichen Rechenmaschinen anstelle eines Rechengetriebes pro Stelle nur ein solches Getriebe besitzt, das sich auf der zentralen Welle befindet und die einzelnen Stellen nacheinander berechnet. Diese Welle ist dafür aus Segmenten zusammengesetzt, die unterschiedliche Zähnezahlen haben und daher die Anzeigen auf der Oberseite unterschiedlich weit drehen können. Alle Teile (bei der Curta II über 700) sind aus Metall gefertigt (Ausnahme: bei Maschinen aus später Produktion waren Kurbel und Löschhebel aus Kunststoff). Spezielle Entgratungs- und Selektionsverfahren sorgen für einen problemlosen und seidenweichen Lauf.
Anzumerken ist, dass dieses Prinzip aus dem ausgehenden 18. Jahrhundert stammt; in dieser Zeit waren solche Rechenmaschinen als „Rechenmühlen“ bekannt, u.a. von Hahn, Schuster und Müller, sowie im 19. Jahrhundert durch Edmondson. Ein Pendant aus ähnlicher Zeit ist die Maschine „Gauß“, um 1905, von Christel Hamann. In ihrer Perfektion und Miniaturisierung ist die Curta aber einzigartig.
Sie wurde von dem österreichischen Büromaschinenfabrikanten Curt Herzstark konstruiert. Herzstark beendete die Konstruktionspläne im KZ Buchenwald. Die Curta ging erst nach dem Krieg in Liechtenstein bei der eigens gegründeten Contina AG in Produktion. Sie war zu ihrer Zeit eine technische Sensation; zwar gab es leistungsfähigere Rechenmaschinen, auch mit elektrischem Antrieb, diese waren aber erheblich größer und kaum transportabel. Ursprünglich sollte sie Liliput heißen; der Name Curta leitet sich ab von dem Vornamen des Konstrukteurs.
Produktionsstart war im Oktober 1948. Der elfstellige Typ I war 85 mm hoch und hatte einen Durchmesser von 53 mm. Er besitzt ein Einstellwerk mit acht Stellen und ein Resultatzählwerk mit elf Stellen. Ab Januar 1954 wurde zusätzlich der Typ II mit einem 11-stelligen Einstell- und 15-stelligen Resultatzählwerk produziert. Er ist mit 90x65 mm etwas größer, im Aufbau aber völlig identisch.
Insgesamt wurden bis November 1970 insgesamt rund 140.000 Exemplare der Curta hergestellt; genaue Produktionszahlen sind allerdings nicht bekannt. Der Preis der Ausführung I lag im Jahr 1965 bei 425 DM; die größere Curta II kostete 535 DM. Aufgrund ihrer geringen Größe war sie trotz des vergleichsweise hohen Preises sehr beliebt, wurde aber in den frühen 70er Jahren schnell von elektronischen Rechnern verdrängt. Die Curtas sind daher aus dem Alltagsgebrauch verschwunden, aber ein sehr beliebtes Sammelobjekt, für das, insbesondere bei guter Erhaltung, entsprechende Preise gezahlt werden.
Zu Demonstrationszwecken gab es auch Curtas mit Öffnungen im Gehäuse und Einzelteile, auch in Großausführung. Eine Curta mit elektrischen Antrieb (über Batterie) wurde ebenso verworfen wie ein Muster mit trigonometrischen Skalen.